Running X11-Basic (almost perfectly) on Raspberry Pi

Update: Markus Hoffmann uploaded a new version of X11Basic-1.20.tar.gz to SourceForge that addresses most of these problems. I’ve edited the article to remove the obsolete bits.


More than 20 years ago, I really liked GFA-Basic. It ran blindingly fast on the Atari ST, and when it didn’t crash on the Amiga, it ran blindingly fast there too. I even wrote a review of it for comp.sys.amiga.programmer, which you can read to this day in all its textual glory. One of the e-mail addresses in that article still works, too.

I still sometimes think in BASIC, and there is much wringing of hands (not by me, really) that there isn’t a good interpreter for Raspbian on the Raspberry Pi. So when I found X11-Basic — a cross-platform GFA-Basic-like system — I had to take a look.

While I have managed to get X11-Basic demos to run, I have to say it’s not running super well. I’ll show you how to install X11-Basic 1.20 and get it (mostly) running, but it’s a bit rough on the ARM. Incidentally, these instructions also work on Ubuntu 12.mumble LTS on x86.

First, you need to install some (okay, a lot of) packages:

sudo apt-get install libreadline-dev tcsh libncurses5-dev xutils-dev libc6-dev libsdl1.2-dev libtool

Now download and extract the package:

tar xvzf X11Basic-1.20.tar.gz
cd X11Basic-1.20

For X11Basic-1.20, you have to issue an extra command before the standard ‘./configure ; make ; make install‘ sequence:

sudo mkdir -p /usr/local/share/man/man1
./configure
make
sudo make install

This is enough to make a working xbasic interpreter. I made some screenshots of some of the graphics demos —

Screen Shot 2013-03-08 at 16.34.51 Screen Shot 2013-03-08 at 14.59.37 Screen Shot 2013-03-08 at 14.57.21 Screen Shot 2013-03-08 at 14.54.08 Screen Shot 2013-03-08 at 14.49.48As you can see, there’s some screen corruption, but most demos just worked. Incidentally, the Mandelbrot one took almost 1¼ hours to run. Took me right back, that did (or it would have, if I hadn’t been outside bombing about in the slush on my bicycle while it churned away).

In order to see just how fast the interpreter is, I ran the formerly fearsome Personal Computer World Benchmark #8 under X11-Basic. PCW#8 used to bring 8-bit home computers to their knees, typically taking more than a minute to run. Here’s the code, indented a bit and with a timing wrapper added:

	LET start=TIMER
	LET K=0
L30:
	LET K=K+1
	LET A=K^2
	LET B=LN(K)
	LET C=SIN(K)
	IF K<1000
		GOTO L30
	ENDIF
	PRINT TIMER-start
	QUIT

(yeah, GFA-style BASIC isn’t too pretty …)

It takes about ¼s to run. The old BBC B was supposed to take about 50s. By comparison, X11-Basic on a manky old dual-core Atom took 0.04s.

The native compiler xbc seems to work. To make a standalone binary of the above code, you do:

xbc -o PCWBenchmark PCWBenchmark.xbas

The compiled binary runs roughly twice as fast as the interpreted code. Not blazing fast, but a useful increase.

Unfortunately, the bytecode compiler xbbc doesn’t actually do anything on the Raspberry Pi yet. So here I leave it up to you to play with X11-Basic, and see what it can and can’t do.

A Murder of Crows on your Raspberry Pi with Boodler

Boodler is rather fun. It generates ambient music based on user-defined or downloaded ‘soundscapes’. If you’ve got a modern (HTML5/Opus-capable) browser, you can hear a streaming demo here: http://repeater.xiph.org:8000/clock.opus. It’s using the FM3 Buddha Machine samples in this demo, but it can run lots more: a tree full of crows, a thunderstorm, dripping water, …

It’s pretty easy to run on a Raspberry Pi running a recent version of Raspbian. The only technical glitch I had was that there’s something deeply confused about ALSA sound handling on the Raspberry Pi. I’m sure it’ll get fixed soon, but for now, you have to use PulseAudio. (If you want to read about my ALSA woes, go here.)

The installation prerequisites are simple:

sudo apt-get install pulseaudio pulseaudio-utils libpulse-dev python-dev

Now download and configure Boodler:

wget http://boodler.org/dl/Boodler-2.0.4.tar.gz
tar xvzf Boodler-2.0.4.tar.gz
cd Boodler-2.0.4
python setup.py build

It takes a while to do this, but make sure it does something useful when it’s building the various sound drivers. You don’t want it to say:

skipping 'boodle.cboodle_pulse' extension

If it says that, you haven’t installed Pulseaudio. Go back and check your apt-get line.

Once it’s built, now install it:

sudo python setup.py install

Now test it:

boodler --hardware --output pulse --testsound

Not merely should you get some pleasant tones from your Raspberry Pi’s audio, but you sound get some informative and non-threatening terminal output. Mine looks like:

Boodler: PulseAudio sound driver.
 PulseAudio library: 2.0.0.
 Sample rate is 44100 fps.
 Samples are 16-bit little-endian.
 Buffer size is 32768.
 21:37:46 (root) Running "Boodler test sound"

If that works, let’s get those crows a-cawin’. Download the soundscapes you need:

boodle-mgr install http://boodler.org/lib/org.boodler.old.crow.1.0.boop
boodle-mgr install http://boodler.org/lib/com.eblong.zarf.crows.1.0.boop

and run it:

boodler --output pulse com.eblong.zarf.crows/ParliamentOfCrows

Crows everywhere!

I really like the Buddha Machine samples. It’s quite big (> 80 MB), so this next set will take a while to download:

boodle-mgr install  http://boodler.org/lib/com.azulebanana.buddhamachine.1.5.1.boop
boodle-mgr install http://boodler.org/lib/com.azulebanana.buddhaagent.1.5.1.boop

It’s worth the wait:

boodler --output pulse com.azulebanana.buddhaagent/ChangingLoops

Boodler has tons of options, prebuilt packages, and instructions to build your own: Boodler Documentation.

One thing I’ve tried to get working, but failed, is streaming from Boodler via icecast. Sure, I can install and run it, it’s just that the results are, um, undesirable. If you want to have a play, here’s how to install icecast:

sudo apt-get install icecast2 ices2 libshout3-dev

Icecast will configure itself, and ask for a couple of passwords. You’ll have to rebuild and reinstall Boodler for it to catch the new configuration. You can then try streaming:

boodler --output shout --define shout-password=mypassword --define shout-mount='/boodler-buddha.ogg' com.azulebanana.buddhaagent/ChangingLoops

If you open a web browser at this address http://raspberrypi:8000/ you should see a config page listing your boodler-buddha.ogg stream. Click on the M3U link next to it, and your streaming music player should start making a joyful noise …

… except in my case, something went very wrong, and it started to produce industrial ultra-glitch nightmare noise: boodler-streaming_test-fail. I’m sure it’s fixable with some tweaking, but I’m not there yet.

X10 for Raspberry Pi on the Cheap [North American Edition]

Now I’ve got my X10 system running and know its limitations, I could have saved a wheen of money not buying stuff I don’t need. Our house appears to have been wired by an, um, spirited amateur, so powerline signalling is of limited use. Thankfully, the tiny and cheap X10 FireCracker CM17A (warning: too many flashing GIFs at this link!) can be driven from heyu [previously]. You can score these on eBay for under $10, and all you need is a serial adapter to drive them.

Leviton X10 controller - cheap!The really cheap bit in my system was discovered in Active Surplus. I found a case of Leviton “Plug-in Frequency Transceiver Modules” for $4/each. One was out of its case, and wouldn’t you know it, it’s the same as a RR501 module, which typically retails for about $30. Sure, these are old stock and are a nasty beige colour, but they provide a way of switching a two-pin appliance. They can also relay remote commands from RF to wired controls.

The only X10 controller I can’t get to work with the Raspberry Pi is the CM19a USB PC Transceiver. I suspect it draws a bit too much power to run from a Raspberry Pi, as it makes the machine unresponsive if it’s plugged it. Running from my bench setup it works fine with the mochad driver, but no dice with the other machine. The CM19a reads wireless RF X10 commands, and it would be useful if I’d added a motion sensor. As is, I’ll stick to the lights going on and off.

(Update: there’s a good chance that my CM19a problems are down to the ancient dwc_otg* fixes I still run on my Raspberry Pi’s kernel. You probably don’t need them, and this device could work fine. One day I will find time to fix ’em …)

(Incidentally, this is the “North American Edition” because X10 RF controls are completely different in Europe, and none of the above is useful to you. Yeah, I know this article is the equivalent of PC Load Letter to you; sorry.)

hey, it’s the sun … heyu and sunwait and cron on the Raspberry Pi

Yep, springtime’s coming, and today’s the first day I know it, despite the -5.8°C outside. I know spring is coming because my sunrise-adjusted lights came on before my alarm today. I’m controlling them with a Raspberry Pi, cron, and X10.

I’d described how to build and use heyu previously, so I won’t go into it further. I use sunwait to control the timing relative to local sunrise and sunset. Sunwait is a simple C program which builds quickly, and you can put the executable somewhere in your path.

(NB: newer versions of sunwait use a completely incompatible command line format. Everything here refers to the 2004 version I linked to above, which does exactly what I need in the way it’s described here.)

You need to know your latitude and longitude to use sunwait. To check its setting for the day, you can call it with the -p option:

$ sunwait -p 43.729N 79.292W
Using location:             43.729000N, 79.292000W
Date:                        6 Feb 2013 
Local time:                  7:44 
Day length:                 10:13 hours
With civil twilight         11:10 hours
With nautical twilight      12:18 hours
With astronomical twilight  13:25 hours
Length of twilight:  civil   0:28 hours
                  nautical   1:02 hours
              astronomical   1:35 hours
Current specified time zone: EST (-5 from UTC) 
Sun transits meridian 1231 EST
                   Sun rises 0726 EST, sets 1736 EST
       Civil twilight starts 0656 EST, ends 1806 EST
    Nautical twilight starts 0622 EST, ends 1840 EST
Astronomical twilight starts 0548 EST, ends 1913 EST

So for me, today’s sunrise is at 0726, and sunset is at 1736. All sunwait does is wait until a specific solar time is reached, and then exit. Whatever command you call after sunwait, therefore, is what gets run at the right time. So if I wanted X10 device H1 to come on an hour before sunrise, I’d run:

sunwait sun up -1:00:00 43.729N 79.292W; heyu on h1

Remembering to run this every day before sunrise would be a pain, so this is where cron helps. cron uses a slightly odd config file that is edited using the crontab -e command. Here’s the relevant bit of my crontab, showing the light control times:

# m h  dom mon dow   command
 01 00   *   *   *   /usr/local/bin/sunwait sun up -1:00:00 43.729N 79.292W; /usr/local/bin/heyu on h1
 02 00   *   *   *   /usr/local/bin/sunwait sun up +1:00:00 43.729N 79.292W; /usr/local/bin/heyu off h1
 03 00   *   *   *   /usr/local/bin/sunwait sun down -1:00:00 43.729N 79.292W; /usr/local/bin/heyu on h1
 45 22   *   *   *   /usr/local/bin/heyu off h1

(you can view your crontab with crontab -l)

The columns in crontab are:

  • minute
  • hour
  • day of month
  • month
  • day of week
  • command

So the four crontab lines mean:

  1. Every day at 00:01, wait until an hour before sunrise and turn light H1 on
  2. Every day at 00:02, wait until an hour after sunrise and turn light H1 off
  3. Every day at 00:03, wait until an hour before sunset and turn light H1 on
  4. At 22:45, turn light H1 off.

So for quite a bit of the day, there are a couple of sunwait tasks just quietly waiting until sunrise or sunset to do their thing. cron, incidentally, is picky about executable paths; that’s why I specified full paths to both sunwait and heyu.

What I’d really like to do is have time on this machine update without a network connection, because it’s running from a particularly messy router set up in a spare bedroom. I should investigate a real-time clock, with GPS time updates from an I²C GPS, talking through a bluetooth console. In my copious free time, of course.

Simple ADC with the Raspberry Pi

Raspberry Pi wearing an MCP3008

Hey! This is a really old article. You should really be using gpiozero these days.

I hadn’t realised it, but the The Quite Rubbish Clock did something that a lot of people seem to have trouble with on the Raspberry Pi: communicating using hardware SPI. Perhaps it’s because everything is moving so fast with Raspberry Pi development, tutorials go out of date really quickly. Thankfully, hardware SPI is much easier to understand than the older way of emulation through bit-banging.

SPI is a synchronous serial protocol, so it needs a clock line as well as a data in and data out line. In addition, it has a Chip Enable (CE, or Chip Select, CS) line that is used to choose which SPI device to talk to. The Raspberry Pi has two CE lines (pins 24 and 26) so can talk to two SPI devices at once. It supports a maximum clock rate of 32 MHz, though in practice you’ll be limited to the rate your device supports.

The device I’m testing here is an MCP3008 10-bit Analogue-to-Digital Converter (ADC). These are simple to use, cheap and quite fast converters with 8 input channels. If you hook them up to a 3.3 V supply they will convert a DC voltage varying from 0-3.3 V to a digital reading of 0-1023 (= 210 – 1). Not quite up there in quality for hi-fi audio or precision sensing, but good enough to read from most simple analogue sensors.

The sensor I’m reading is the astonishingly dull LM35DZ temperature sensor. All the cool kids seem to be using TMP36s (as they can read temperatures below freezing without a negative supply voltage). One day I’ll show them all and use a LM135 direct Kelvin sensor, but not yet.

To run this code, install the SPI libraries as before. Now wire up the MCP3008 to the Raspberry Pi like so:

 MCP 3008 Pin          Pi GPIO Pin #    Pi Pin Name
==============        ===============  =============
 16  VDD                 1              3.3 V
 15  VREF                1              3.3 V
 14  AGND                6              GND
 13  CLK                23              GPIO11 SPI0_SCLK
 12  DOUT               21              GPIO09 SPI0_MISO
 11  DIN                19              GPIO10 SPI0_MOSI
 10  CS                 24              GPIO08 CE0
  9  DGND                6              GND

The wiring for the LM35 is very simple:

 LM35 Pin        MCP3008 Pin
==========      =============
 Vs              16 VDD
 Vout             1 CH0
 GND              9 DGND

The code I’m using is a straight lift of Jeremy Blythe’s Raspberry Pi hardware SPI analog inputs using the MCP3008. The clever bit in Jeremy’s code is the readadc() function which reads the relevant length of bits (by writing the same number of bits; SPI’s weird that way) from the SPI bus and converting it to a single 10-bit value.

#!/usr/bin/python
# -*- coding: utf-8 -*-
# mcp3008_lm35.py - read an LM35 on CH0 of an MCP3008 on a Raspberry Pi
# mostly nicked from
#  http://jeremyblythe.blogspot.ca/2012/09/raspberry-pi-hardware-spi-analog-inputs.html

import spidev
import time

spi = spidev.SpiDev()
spi.open(0, 0)

def readadc(adcnum):
# read SPI data from MCP3008 chip, 8 possible adc's (0 thru 7)
    if adcnum > 7 or adcnum < 0:
        return -1
    r = spi.xfer2([1, 8 + adcnum << 4, 0])
    adcout = ((r[1] & 3) << 8) + r[2]
    return adcout

while True:
    value = readadc(0)
    volts = (value * 3.3) / 1024
    temperature = volts / (10.0 / 1000)
    print ("%4d/1023 => %5.3f V => %4.1f °C" % (value, volts,
            temperature))
    time.sleep(0.5)

The slightly awkward code temperature = volts / (10.0 / 1000) is just a simpler way of acknowledging that the LM35DZ puts out 10 mV (= 10/1000, or 0.01) per °C. Well-behaved sensors generally have a linear relationship between what they indicate and what they measure.

If you run the code:

sudo ./mcp3008_lm35.py

you should get something like:

  91/1023 => 0.293 V => 29.3 °C
  93/1023 => 0.300 V => 30.0 °C
  94/1023 => 0.303 V => 30.3 °C
  95/1023 => 0.306 V => 30.6 °C
  96/1023 => 0.309 V => 30.9 °C
  97/1023 => 0.313 V => 31.3 °C
  97/1023 => 0.313 V => 31.3 °C
  98/1023 => 0.316 V => 31.6 °C
  99/1023 => 0.319 V => 31.9 °C
  99/1023 => 0.319 V => 31.9 °C
 100/1023 => 0.322 V => 32.2 °C
 100/1023 => 0.322 V => 32.2 °C
 100/1023 => 0.322 V => 32.2 °C
 101/1023 => 0.325 V => 32.5 °C
 101/1023 => 0.325 V => 32.5 °C
 102/1023 => 0.329 V => 32.9 °C
 102/1023 => 0.329 V => 32.9 °C
 103/1023 => 0.332 V => 33.2 °C

Note that the sensor had been sitting over the Raspberry Pi’s CPU for a while; I don’t keep my house at 29 °C. I made the temperature go up by holding the LM35.

So, you’ve just (fairly cheaply) given your Raspberry Pi 8 analogue input channels, so it can behave much more like a real microcontroller now. I remember from my datalogging days that analogue inputs can be pretty finicky and almost always return a value even if it’s an incorrect one. Check the chip’s datasheet to see if you’re doing it right, and if in doubt, meter it!

qrclock, the demo reel

classy cable for the Quite Rubbish clock

The video of the Quite Rubbish Clock isn’t running the same code that’s in the listing. Here it is, showing off some of the handy code that’s in bgreat’s nokiaSPI Python class:

#!/usr/bin/python
# -*- coding: utf-8 -*-
# qrmovie

import time
# need to use git://github.com/mozillazg/python-qrcode.git
import qrcode
from PIL import Image, ImageFont
import ImageOps
# uses bgreat's SPI code; see
# raspberrypi.org/phpBB3/viewtopic.php?f=32&t=9814&p=262274&hilit=nokia#p261925
import nokiaSPI

noki = nokiaSPI.NokiaSPI()              # create display device
qr = qrcode.QRCode(version=1,           # V.1 QR Code: 21x21 px
error_correction=qrcode.constants.ERROR_CORRECT_M,
box_size=2, border=1)
bg = Image.new('1', (84, 48))           # blank (black) image background

# intro
noki.cls()
noki.led(0)
time.sleep(3)
for i in range(0,769,32):
    noki.led(i)
    time.sleep(0.04)

# display is 14 columns by 8 rows
noki.centre_word(1, 'scruss.com')
noki.centre_word(3, 'presents')
time.sleep(3)
noki.cls()
noki.centre_word(1, 'qrclock')
noki.centre_word(2, 'the')
noki.gotorc(3,3)
noki.text("[Q]uite")
noki.gotorc(4,3)
noki.text("[R]ubbish")
noki.gotorc(5,3)
noki.text(" Clock")
time.sleep(3)

elapsed=0
start_time = time.time()
while (elapsed<12):
    qr.clear()
    newbg = bg.copy()                   # copy blank background
    s = time.strftime('%Y-%m-%d %H:%M:%S')
    qr.add_data(s)                      # make QR Code of YYYY-MM-DD HH:MM:SS
    qr.make()
    qrim = qr.make_image()              # convert qrcode object to PIL image
    qrim = qrim.convert('L')            # make greyscale
    qrim = ImageOps.invert(qrim)        # invert colours: B->W and W->B
    qrim = qrim.convert('1')            # convert back to 1-bit
    newbg.paste(qrim, (18, 0))          # paste QR Code into blank background
    noki.show_image(newbg)              # display code on LCD
    time.sleep(0.4)                     # pause before next display
    elapsed = time.time() - start_time

noki.cls()
noki.centre_word(1, 'for')
noki.centre_word(2, 'more')
noki.centre_word(3, 'details')
time.sleep(3)
noki.cls()
noki.load_bitmap("blogpost-nokia.bmp", True)
time.sleep(7)
noki.cls()
noki.centre_word(3, 'fin')
noki.centre_word(5, 'scruss, 2013')
time.sleep(1)
for i in range(768,-1,-32):
    noki.led(i)
    time.sleep(0.05)
time.sleep(1)
noki.cls()

(This source, plus nokiaSPI class: qrclock-movie.zip)

Lines 43-58 show off the QR clock for a maximum of 12 seconds. Any more, and you’d get really bored.

The screen handling functions I used are:

  • cls() — Clears the screen.
  • led(brightness) — sets the backlight to brightness. For me, full brightness is at 768. A value of zero turns the backlight off. If you don’t have the screen LED connected to one of the Raspberry Pi’s PWM pin, this will either be full on (for any brightness >= 1), or off, for brightness=0. This is used to fade up the screen in lines 24-26, and fade it down far too theatrically in lines 72-74.
  • show_image(PILImage) — display a single bit depth black and white Python Imaging Library object PILImage. This can be no larger than 84×48 pixels.
  • load_bitmap(file, Invert) — load a single bit depth black and white BMP file of maximum size 48×84. If Invert is true, keep the colours as they are, otherwise swap black and white to make a negative image. nokiSPI flips images by 90°, so the image I loaded to show the URL of the blog post looks like this:
    blogpost-nokia
    (I know, I could have generated this in code, but I’d already made the image using qrencode. I couldn’t be bothered working out the image size and offsets.)

The text handling functions I used are:

  • gotorc(row, column) — move the text cursor to row, column. The screen only has 14 columns by 8 rows if you use the standard 6×6 pixel font, so keep your text short to avoid disappointment.
  • text(text) — write text at the current cursor position.
  • centre_word(row, text) — write text centred in row row. Since the text rows are a maximum of 14 columns, text with an odd number of characters will appear slightly off-centre.

There are many more functions in the nokiaSPI class; watch the demo, have a dig through the source and see what you can use.

The Quite Rubbish Clock

Hey! This article is really old and probably doesn’t work any more: things have changed a lot in Raspberry Pi world since 2013

Update 3: code for the demo video is here.

Update 2: In which I actually post working code.

Update: Eep! This post was featured on the Raspberry Pi blog today. Thanks, Liz!

And now for something completely different:

… a clock that isn’t human readable. You’ll need a QR code reader to be able to tell the time.

Nokia screen on Raspberry Pi

This, however, is not the prime purpose of the exercise. I was looking for an excuse to try some direct hardware projects with the GPIO, and I remembered I had a couple of Nokia-style surplus LCDs lying about that could be pressed into service. These LCDs aren’t great: 84×48 pixels, 3V3 logic, driven by SPI via an 8-pin header which includes PWM-controllable LED backlighting. They are cheap, and available almost everywhere: DealExtreme ($5.36), SparkFun ($9.95), Adafruit ($10, but includes a level shifter, which you really need if you’re using a 5V logic Arduino), Solarbotics ($10) and Creatron (about $12; but you can walk right in and buy one). Despite being quite difficult to use, helpful people have written drivers to make these behave like tiny dot-addressable screens.

I’d been following the discussion on the Raspberry Pi forum about driving the Nokia LCD from a Raspberry Pi. Only when user bgreat posted some compact code that was supposed to run really fast did I dig out the LCD board and jumper wires. Building on bgreat’s nokiaSPI.py class and a few other bits of code, here’s what I built to make this singularly pointless clock:

#!/usr/bin/python
# -*- coding: utf-8 -*-
# qrclock - The Quite Rubbish Clock for Raspberry Pi - scruss, 2013-01-19

import time
# need to use git://github.com/mozillazg/python-qrcode.git
import qrcode
from PIL import Image
import ImageOps
# uses bgreat's SPI code; see
# raspberrypi.org/phpBB3/viewtopic.php?f=32&amp;amp;amp;amp;t=9814&amp;amp;amp;amp;p=262274&amp;amp;amp;amp;hilit=nokia#p261925
import nokiaSPI

noki = nokiaSPI.NokiaSPI()              # create display device
qr = qrcode.QRCode(version=1,           # V.1 QR Code: 21x21 px
                   error_correction=qrcode.constants.ERROR_CORRECT_M,
                   box_size=2, border=1)
bg = Image.new('1', (84, 48))           # blank (black) image background

while 1:
    qr.clear()
    newbg = bg.copy()                   # copy blank background
    s = time.strftime('%Y-%m-%d %H:%M:%S')
    qr.add_data(s)                      # make QR Code of YYYY-MM-DD HH:MM:SS
    qr.make()
    qrim = qr.make_image()              # convert qrcode object to PIL image
    qrim = qrim.convert('L')            # make greyscale
    qrim = ImageOps.invert(qrim)        # invert colours: B-&amp;amp;amp;gt;W and W-&amp;amp;amp;gt;B
    qrim = qrim.convert('1')            # convert back to 1-bit
    newbg.paste(qrim, (18, 0))          # paste QR Code into blank background
    noki.show_image(newbg)              # display code on LCD
    time.sleep(0.4)                     # pause before next display

(Convenient archive of all the source: qrclock2.zip, really including bgreat’s nokiaSPI class this time …)

To get all this working on your Raspberry Pi, there’s a fair amount of configuration. The best references are bgreat’s own comments in the thread, but I’ve tried to include everything here.

Enabling the SPI kernel module

As root, edit the kernel module blacklist file:

sudo vi /etc/modprobe.d/raspi-blacklist.conf

Comment out the spi-bcm2708 line so it looks like this:

#blacklist spi-bcm2708

Save the file so that the module will load on future reboots. To enable the module now, enter:

sudo modprobe spi-bcm2708

Now, if you run the lsmod command, you should see something like:

Module                  Size  Used by
spi_bcm2708             4421  0

Installing the WiringPi, SPI and other required packages

WiringPi by Gordon is one of the neater Raspberry Pi-specific modules, as it allows relatively easy access to the Raspberry Pi’s GPIO pins. For Raspbian, there are a few other imaging libraries and package management tools you’ll need to install here:

sudo apt-get install python-imaging python-imaging-tk python-pip python-dev git
sudo pip install spidev
sudo pip install wiringpi

Installing the Python QR code library

Finding a library that provided all the right functions was the hardest part here. I ended up using mozillazg‘s fork of lincolnloop‘s python-qrcode module. mozillazg’s fork lets you use most of the lovely PIL methods, while the original hides most of them. Since I had to do some image compositing and colour remapping to make the image appear correct on the Nokia screen, the new fork was very helpful.

To install it:

git clone git://github.com/mozillazg/python-qrcode.git
cd python-qrcode/
sudo python ./setup.py install

The tiny 84×48 resolution of the Nokia screen doesn’t give you many options for sizing QR codes. For the time display of the clock, a 21×21 module Version 1 code with two pixels per module and one module margin just fits into 48 pixels. Using a medium level of error correction, you can fit the 19-character message (such as “2013-01-19 18:56:59”) into this tiny screen with a very good chance of it being read by any QR code reader.

(In the video, there’s a much larger QR code that’s a link to this blog post. That’s a Version 7 code [45×45 modules] at one pixel per module and no margin. This doesn’t meet Denso Wave’s readability guidelines, but the Nokia screen has large blank margins which seem to help. It won’t read on every phone, but you’re here at this link now, so you don’t need it …)

Wiring it all up

(Do I really need to say that you’ll be messing around with the inner delicate bits of your Raspberry Pi here, and if you do something wrong, you could end up with a dead Raspberry Pi? No? Okay. Just make sure you take some static precautions and you really should have the thing shut down and powered off.)

You’ll need 8 female-female right-angled ones). Note that the thick border of the LCD is the top of the screen. These boards are made who-knows-where by who-knows-whom, and there’s a huge variety of labels and layouts on the pins. My one appears to be yet another variant, and is labelled:

  1. VCC
  2. GND
  3. SCE
  4. RST
  5. D/C
  6. DNK(MOSI)
  7. SCLK
  8. LED
screen labels

This is how I wired it (from comments in bgreat’s code and the GPIO reference):

 LCD Pin       Function      Pi GPIO Pin #   Pi Pin Name
============= ============= =============== =============
 1 VCC         Vcc            1              3.3 V
 2 GND         Ground        25              GND
 3 SCE         Chip Enable   24              GPIO08 SPI0_CE0_N
 4 RST         Reset         11              GPIO17
 5 D/C         Data/Command  15              GPIO22
 6 DNK(MOSI)   Data In       19              GPIO10 SPI0_MOSI
 7 SCLK        Serial Clock  23              GPIO11 SPI0_SCLK
 8 LED         Backlight     12              GPIO18 PWM0
GPIO wiring
back of screen

Wire it up, and fire up the program:

sudo ./qrclock.py

Yes, code that accesses GPIO needs to be run as root. Pesky, but helps you avoid running code that accidentally scrams the nuclear power station you’re controlling from your Raspberry Pi …

Adding a Bluetooth serial terminal to Raspberry Pi

Hey! This article is really old. The advice given here will not work on a Raspberry Pi 3, and will need some care with recent versions of Raspbian.

Sometimes you find a computer component that’s so cheap, that works so well, that you’re amazed you managed to live without it for so long. The JY-MCU Arduino Bluetooth Wireless Serial Port Module is that component for me right now.

JY-MCU Arduino Bluetooth Wireless Serial Port Module from dx.com
JY-MCU Arduino Bluetooth Wireless Serial Port Module from dx.com

This little board is a cheap ($8.50!) Bluetooth serial port. It’s happy with the Raspberry Pi’s 3.3 V logic levels, and will communicate at standard rates between 1200 and 1,382,400 baud. It even comes with a nifty little cable which is just the right polarity for the Raspberry Pi’s GPIO pins. It’s really meant to do serial comms on an Arduino, but it’s not limited to that.

What this board allows you to do is connect to your Raspberry Pi’s serial console via Bluetooth. That way, you can have your Raspberry Pi hidden away somewhere, and yet still log in as if you were talking to it directly through a serial cable. Combine this with a USB wireless adaptor (like the Belkin N150 that I use) and you’ve got a wireless device you can always connect to, even if your network goes down.

In order to use this device with your Raspberry Pi, you’re going to have to do some reconfiguration. Exactly what reconfiguration you do depends on some additional hardware:

  1. If you have a USB-TTL Serial converter (like an FTDI Friend, FTDI Basic Breakout – 3.3V, or the one I use, the OSEPP FTDI), you can reconfigure the Bluetooth module to run at 115,200 baud, the default speed of the Raspberry Pi’s serial port.
  2. If you don’t have the serial converter, you’ll need to reconfigure the Raspberry Pi’s serial terminal to run at the JY-MCU Bluetooth adapter’s default 9600 baud.

To reconfigure the Bluetooth module to run at 115,200 baud

(I chose this option, as it allows me to use the Bluetooth module with Firmata on an Arduino, too.)

The JY-MCU board comes with no instructions, but all the reconfiguration commands you’ll need are explained here: hc06_linvor_1.5_at_command_set [[hc06_linvor_1.5_at_command_set]] (cached copy; original has gone) While you’re setting the communications speed, you’ll probably also want to change the device name (so you can more easily recognize your own board, as the default is something like “Linvor”) and PIN (for that warm feeling of security that only a four digit code can provide). The device is configured using AT commands (or as we eldsters call them, Hayes commands) by plugging it directly into a USB-TTL Serial device attached to your computer. Here’s how you wire it:

USB-TTL Serial    Bluetooth Serial
================= =================
GND               GND
VCC               VCC
TXD               RXD
RXD               TXD

Note that TXD and RXD are crossed. The Bluetooth unit runs on a 3.6-6V supply, but 3.3V logic. To enter the AT commands, start a serial terminal (Hyperterm, minicom, screen …) at 9600 baud talking to the USB-Serial adapter, and copy and paste these commands in:

AT+NAMEBluey
AT+PIN4321
AT+BAUD8

You’ll have to disconnect the terminal and reconnect at 115,200 baud, as that last command just reset the Bluetooth device’s speed. You might want to use other settings than Bluey for the name and 4321 for the PIN, too.

Update: check that your Raspberry Pi’s /boot/cmdline.txt contains:

console=ttyAMA0,115200

You will not get a login prompt otherwise.

Now go to Using the Device.

To reconfigure the Raspberry Pi’s serial terminal to run at 9600 baud

Serial terminals traditionally ran at 9600 baud, and that seems a bit slow these days. But, if you don’t have a way of setting up the Bluetooth device differently, 9600 is what you’re stuck with. You’ll need to edit your Raspberry Pi’s /boot/cmdline.txt so that the part that previously read:

console=ttyAMA0,115200 kgdboc=ttyAMA0,115200

to

console=ttyAMA0,9600 kgdboc=ttyAMA0,9600

Note that this file should only contain one line, so be careful you don’t add extra line breaks or your Raspberry Pi won’t boot. Save the file, reboot your Raspberry Pi, and go to the next section.

Using the Device

On your Raspberry Pi, connect the Bluetooth Wireless Serial Port Module as follows:

Raspberry Pi      Bluetooth Serial
================= =================
5V  (GPIO Pin  2) VCC
GND (GPIO Pin  6) GND
TXD (GPIO Pin  8) RXD
RXD (GPIO Pin 10) TXD

(Despite the minimum 3.6V rating, I’m happily running mine from the 3V3 power, GPIO Pin 1. YMMV.)

When the board gets power, but isn’t paired, the LEDs on the Bluetooth module flash quickly. Now you need to pair the device with your computer (use 0000 as the PIN, or whatever you chose if you changed it), and it will appear as a serial port on your machine. On my Mac, that’s a device called /dev/tty.Bluey-DevB. The LEDs stop flashing when the port goes into use. Open up a serial terminal, set the device and speed correctly, and if all goes well, you should see:

Debian GNU/Linux wheezy/sid raspberrypi ttyAMA0

raspberrypi login:

Success!

X10 home automation with Raspberry Pi: heyu

I never quite get the hang of setting timers for lights. Either I forget daylight savings completely, or I set something so general that I find the lights coming on mid-afternoon when it’s still light. Minor annoyances require the over-application of technology, and fast!

I scored an X10 ActiveHome Starter Kit for cheap(ish) on eBay. X10 is a pretty old technology (1970s! Scottish!) and has some severe limitations (slow! prone to interference! unencrypted!) but has a large user base, and did I mention it’s pretty cheap?

The key component of a computer controlled X10 system is the CM11 computer interface. It takes serial commands from a computer, and pushes them out (slowly) as signals modulated over your house wiring. Various plug-in modules pick up these signals, and if the device address in the command matches that of the module, the module turns on (or off, or dims).

Since the version of the CM11 interface that I have is serial, I’ll need a USB→Serial converter. All I had lying around was a very old Prolific PL2303 interface, which works fine with Raspbian, but I’d prefer an FTDI one for more reliability. Long-term stability of USB Serial on the Raspberry Pi is currently questionable; there’s some good discussion on kernel parameters that might help.

To send X10 commands from a Raspberry Pi (or indeed, any Linux computer) you need heyu. You have to build it from source, but the instructions are clear, and it takes about 10 minutes to build on a 256 MB Raspberry Pi. The install script asks you where your serial port is, and for my device it is /dev/ttyUSB0.

(Update: I re-imaged the Raspberry Pi that runs these tasks today and rebuilt heyu without success. Don’t assume you can do a ./configure; make; sudo make install here. You have to run heyu’s own ./Configure.sh first before make. It does some non-obvious magic. Read the README and you’ll be fine, unlike me …)

Most of the lights in our house are fluorescent, which is a problem for the standard X10 lamp modules. CFLs are not dimmable, and the standard lamp module doesn’t work with them. The lamp modules don’t work very well with low-voltage halogen lamps, either; extreme buzzing ensues, with a faint brownish light oozing out from the bulb and a vague burning smell. Best avoided, and better to use an appliance module, which is a simple mechanical relay.

The only controller that came with the kit that would work with my lights was the X10 transceiver, which also includes an appliance switch. I gave this device an address of H9 (house code H, unit code 9), and plugged in a lamp. To turn it on, I issued this command:

heyu on H9

After about 8-10 a couple of seconds and a loud CLUNK from the controller’s relay, the light came on (if it’s taking longer, read this comment). To turn it off, I told it:

heyu off H9

Whoa! Raw power! I can now turn AC devices on and off from my Raspberry Pi (Martin Creed, watch out!). I guess I could set up cron jobs to control the lights, but cron doesn’t know about solar time (Sunwait and SunCron do, if you want to futz with them). I’ve got MisterHouse running on the Raspberry Pi for more clever control, but more on setting that up later.

Incidentally, if you’re in Europe, Marmitek sell a variety of 220 V 50 Hz X10 modules. Their website is much clearer than the angry-fruit-salad that is x10.com. It looks like X10 have updated their starter kit to include the newer CM15 USB interface which will likely not work with heyu.

Raspberry Pi as a USB audio capture device

The Raspberry Pi’s hardware and software support has come a long way in the few months it has been in the wild. I first tried this application in the summer, and the results were dismal. Now, thanks much improved USB driver support under Raspbian, I’m pleased to say it works flawlessly.

Earlier this year, I bought a turntable (ack!) for transferring vinyl to mp3. I have a TC-772 USB phono preamp, which spits out a 48 kHz stereo audio stream. If you plug the USB output of the preamp into a Rapberry Pi (running Raspbian Wheezy with all the updates), it’s instantly recognized as an audio device:

$ lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp. 
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp. 
Bus 001 Device 004: ID 08bb:2902 Texas Instruments Japan PCM2902 Audio Codec

If you install the ALSA recording utilities (sudo apt-get install alsa-utils pulseaudio – this should pull in a whole bunch of necessary packages), you can record directly from this device with the following command:

arecord -D 'pulse' -V stereo -c 2 -f dat -d 900 out.wav

which records from the ‘pulse’ audio device, displaying a stereo text VU meter (handy for setting levels), writing to a two channel 16-bit 48 kHz file called ‘out.wav’ for a maximum of 900 seconds (15 minutes). arecord has a baffling number of recording source options; arecord -L will show them. ‘pulse’ was the first one I tried.

So how does it sound? Here’s a 30 second excerpt from the only single I owned for years, The Music Tapes‘ “The Television Tells Us/Freeing Song by Reindeer”: Freeing Song by Reindeer – excerpt [mp3]. I’ve saved an even smaller snippet as lossless FLAC so you can see that the waveform’s pretty clean: FreeingSongbyReindeer-tiny_excerpt [flac].

Sounds pretty good. Not quite as good as having Julian play it in your house, I’ll allow, but not bad for a first try with a $35 computer.

a paucity of pi posts

I would have been posting more Raspberry Pi posts, but my latest Made-in-UK 512MB board seems to have a raft of problems. Left to its own devices, it will happily corrupt any SD card I put in it. This is some fairly typical dmesg output:

[36218.109865] mmc0: final write to SD card still running
[36228.126345] mmc0: Timeout waiting for hardware interrupt - cmd12.
[36228.127534] mmcblk0: error -110 sending stop command, original cmd response 0x900, card status 0x900
[36248.152121] mmc0: final write to SD card still running
[36258.163655] mmc0: Timeout waiting for hardware interrupt - cmd12.
[36258.164865] mmcblk0: error -110 sending stop command, original cmd response 0x900, card status 0x900
[36269.084446] mmc0: final write to SD card still running
[36279.101766] mmc0: Timeout waiting for hardware interrupt - cmd12.
[36279.102953] mmcblk0: error -110 sending stop command, original cmd response 0x900, card status 0x900
[36309.899006] mmc0: Timeout waiting for hardware interrupt - cmd25.
[36309.899047] mmc0: resetting ongoing cmd 25DMA before 4096/4096 [84]/[96] complete
[36309.902774] mmcblk0: error -110 transferring data, sector 1721928, nr 848, cmd response 0x900, card status 0xc00
[36309.902964] mmc0: DMA IRQ 6 ignored - results were reset
[36309.903200] end_request: I/O error, dev mmcblk0, sector 1722649
[36309.903227] end_request: I/O error, dev mmcblk0, sector 1722656
...
[36309.903462] end_request: I/O error, dev mmcblk0, sector 1722768
[36309.903823] Aborting journal on device mmcblk0p2-8.
[36310.460263] journal commit I/O error
[36310.653420] EXT4-fs error (device mmcblk0p2): ext4_journal_start_sb:327: Detected aborted journal
[36310.667118] EXT4-fs (mmcblk0p2): Remounting filesystem read-only

I’m not alone in having this problem; it’s reported by other people at Raspberry Pi • PI freezes and Filesystem corruption on the SD card – Stack Exchange. I don’t see any solutions or responses from the Foundation yet.

Update: for no reason I can explain, setting over_voltage=2 in the /boot/config.txt file seems to make this problem go away. For me, at least.

Painfully Slow Amstrad CPC Emulation on the Raspberry Pi

Yeah, you can do it, but whether you should, I don’t know. Download the latest Arnold/Linux source, then (according to this post) after installing the dependencies, you just need to change

TARGET_FMT=elf32-i386

to

TARGET_FMT=elf32-littlearm

in src/Makefile.in.

It works, for very slow values of “works”. Mind you, I was running it through a remote X session, so 2 fps is all I could have hoped for …

Sometimes, things do not go exactly as planned … C development for Amstrad CPC on Raspberry Pi

Hey! This is ancient! But since we’re talking about even more ancient computers, those bits still work. I’d recommend looking at the current installation instructions for z88dk rather than what I’ve got here.

a very very crashed Amstrad CPC screen

If you crash an Amstrad CPC, you often got some pretty patterns. Like the one above, which was supposed to print the alphabet, but got about as far as R, then started making coloured spots on the screen. My alphabet doesn’t (usually) contain coloured spots, so something went wrong.

This post is only about the Raspberry Pi in that it’s the nearest always-on Linux system that I have. This would likely work fine on any Linux machine. While the Z80 cross compiler I use (z88dk) is available in the repos, I can’t get it to build anything, so I just pulled down the latest version. To build the compiler:

wget http://nightly.z88dk.org/z88dk-latest.tgz
tar xvzf z88dk-latest.tgz
cd z88dk
export Z80_OZFILES=$(pwd)/lib/
export ZCCCFG=${Z80_OZFILES}config/
export PATH=${PATH}:$(pwd)/bin
./build.sh

This should result in a working environment. We can test it with a simple C program:

/* alfa.c - print the alphabet */
#include <stdio.h>

int main(void) {
  char a='A';
  char b=26;
  while (b>0) {
    putchar(a);
    a++;
    b--;
  }
}

You can build it with:

zcc +cpc -create-app -make-app -O3 -unsigned -o alfa.bin alfa.c -lcpcfs -zorg=16384

You should end up with a file alpha.bin of approximately 4749 (!) bytes. You can copy it to a disc image using iDSK:

iDSK blank.dsk -i alfa.bin -c 4000 -e 4000 -t 1

It runs like this:

You can do the same with Z80 assembly language (shown here in the most gratuitously pretty Amstrad assembler, Maxam):
Although this results in only 11 bytes of code, it’s not portable; the C code above compiled and ran on both my Raspberry Pi and my Mac. It wouldn’t even run properly on a different Z80 system, as only the Amstrad CPC knows that call #bb5a prints the character in the A register. On the ZX Spectrum, for example, it was the completely different instruction rst 16 to print a character.

(There’s a lot more on z88dk on the CPCWiki.)

Wireless, Cordless Raspberry Pi

Yay! I found a wireless adapter that the Raspberry Pi is able to power without an external hub. It’s a Belkin N150 Micro Wireless USB Adapter. Not sure of the range, but it works well enough, and is cheap.

Just to show you how hard-core I am, that’s a screenshot of a browser (showing a picture of the Raspberry Pi + LSTech Solar charger) running on that Raspberry Pi with an X session tunnelled to the laptop you can see in the background. My head hurts now.