

SYN6288E Chinese speech synthesis chip

user manual

Beijing Yuyin Tianxia Technology Co., Ltd.

Yuyin Tianxia Official Subscription Number

Yuyin Tianxia pre-sale consultation

Version	date	modification record
V1.0	2021-06-08	The official release version, the package of SYN6288 is changed to LQFP32L, and the chip model is changed to SYN6288E; internal communication protocol, pin sequence, pin peripheral circuit are consistent with SYN6288.

Table of contents

1. Overview	5
1.1 Product application range	5 1.2
Features	5 1.3 Product Function
Description5	6 1.4 Compositing
effects	7 1.5 System structure block
diagram	7 1.6 Ordering
information	8 1.7 IC pin
structure	9 1.7.1 Pin
view	9 1.7.2 Pin
definition	10
2. Chip control mode	11
2.1 Control commands	11 2.2 Chip
Backhaul	11
3. communication method	
3.1 Asynchronous serial communication (UART) interface	12 3.2
Communication Transmission Byte Format	12
4. Communication frame definition and communication contro	L 13
4.1 Command frame format	
supported by the chip	14 4.3 Special instructions related to command
frames.	15 4.3.1 Instructions for sleep and wake-
up	15 4.3.2 Instructions for setting the baud
rate	
instructions	15 4.4 Example of command
frame	
Command	16 4.4.2 Command to set the baud
rate	17 4.4.3 Stop Compositing
Command	
command	18 4.4.5 Restoring Compositing
Commands	18 4.4.6 Chip status query
command	19 4.4.7 The chip enters the Power Down mode
command	19
5. Text Control Markup	19
5.1 List of text control tags	19 5.2 Example of using text control
tags	21 5.2.1 Mark [v?] Foreground playback
volume	
volume	21 5.2.3 Mark [t?] word
speed	21 5.2.4 Token[n?]Number Processing
Strategy	22 5.2.5 Mark [y?] the reading method of number
1	22 5.2.6 Mark [x?]Prompt sound
strategy	
strategy	twenty two

5.2.8 Mark [o?] Text reading method	23 5.2.9 Mark [d]Restore
default	23 5.2.10 Mark [r] Pronunciation by last
name	23 5.2.11 Marks [2] and [3]mandatory
word.	23 5.2.12 Example of initialization
synthesis	twenty four
6. Prompt sound effect	twenty four
6.1 List of voice prompts	24 6.2 Chord prompts
list	25
7. The method of calling the SYN6288E chip by the host o	computer
7.1 Simple call method	
method	26 7.3 Query The method of chip working
status	26
8. Coding system and scope of chip identification	26
8.1 GB2312 coding system	27 8.2 GBK coding
system	27 8.3 BIG5 coding
system	27 8.4 Unicode encoding
system	27
9. Product Specifications	
9.1 Encapsulating data	28 9.2 Limit
parameters28	29 9.3 Electrical
Characteristics29	
Playing Synthetic Sound	
mode	30 9.5 Sleep (low power consumption) mode of
operation	30
10. Reference circuit	30
10.1 Reference circuit of power supply module	31 10.2 Reset circuit and
status indication circuit	32 10.3 Speaker output of
SYN6288E	32 10.4 SYN6288E external high-speed crystal
oscillator	33 10.5 Inverting circuit for serial
communication	33 10.6 Reference circuit for serial
communication	
fifth pin)	34
11. Example program for sending synthesized text	35
11.1 C language sample program	35 11.2 Assembly language sample
program	37
12. appendix	39
12.1 References	

1. overview

SYN6288E Chinese speech synthesis chip is a mid-to-high-end speech synthesis chip with a more natural effect, based on the more cost-effective SYN6288 chip launched by Beijing Yuyin Tianxia Technology Co., Ltd. in early 2010. SYN6288E receives the text data to be synthesized through the asynchronous serial port (UART) communication method, and realizes the conversion from text to speech (or TTS speech).

In 2002, Yuyin Tianxia developed the first speech synthesis chip OSYNO6188 in China. The company's latest SYN6288E speech synthesis chip: LQFP32L chip package, simple hardware interface, low power consumption, clear and mellow timbre, high cost performance; in addition, SYN6288E

It is smarter and more accurate in recognizing text/numbers/strings, and the speech synthesis is more natural and intelligible. SYN6288E Speech Synthesis Effect

It is a Chinese speech synthesis chip that is really oriented to mid-to-high-end industry applications.

The birth of SYN6288E speech synthesis chip will promote the industry application of TTS speech synthesis technology to go deeper and wider!

1.1 Product application scope

- Vehicle information terminal voice broadcast, vehicle dispatching, vehicle navigation
- Bus station announcer, attendance machine
- Cell phone, fixed line
- Queue calling machine, cash register and charging machine
- Vending machines, information machines, POS

machines • Intelligent instrumentation, weather warning machines, intelligent

 $transformers \bullet Intelligent \ toys, \ smart$

watches • Electric bicycles

• Voice electronic books, color screen story books, voice electronic dictionaries, voice electronic guides

News broadcast • Electronic map

1.2 Features

 $\label{eq:continuous} \ddot{\textbf{y}} \textbf{Support} \text{ texts in GB2312, GBK, BIG5 and UNICODE internal code formats; } \ddot{\textbf{y}} \textbf{Clear} \text{ , natural and } \\$

accurate Chinese speech synthesis effect; can synthesize any Chinese text, and support the synthesis of English letters; ÿWith intelligent text analysis and processing algorithms, can Correctly identify numbers, numbers, time and date, and commonly used symbols of weights and measures; ÿHave a strong ability to process polyphonic characters and Chinese surnames; ÿSupport a variety of text control marks

to improve the accuracy of text processing; $\ddot{\textbf{y}}\textbf{The}$ amount of text synthesized each time up to 200

bytes;

ÿSupport a variety of control commands, including: synthesis, stop, pause synthesis, continue synthesis, change baud rate, etc.;

ÿSupport the sleep function, which can reduce power consumption in the sleep state; support multiple ways to query the working status of the chip;

ÿSupport serial data communication interface, support three communication baud rates: 9600bps, 19200bps, 38400bps;

ÿSupport 16-level volume adjustment; the foreground volume for playing text and the background volume for playing background music can be controlled separately;

ÿThe speech speed of words can be adjusted by sending control marks, and it supports 6-level word speech speed adjustment;

ÿ Multiple chord music, prompt sound effects and common voice prompt sounds for certain industries are solidified in the chip;

ÿInternal integration of 19 voice prompts, 23 chord prompts, and 15 background music;

ÿBuilt -in 10-bit push-pull (push-pull), independent power amplifier for digital-to-analog DAC output;

ÿThe final product provides LQFP patch packaging form, the smallest in the industry;

 $\ddot{\mathbf{y}}$ All indicators of the chip meet the application in harsh outdoor environments;

1.3 Product Function Description

ÿText synthesis function

The chip supports the synthesis of any Chinese text, and can adopt four encoding methods of GB2312, GBK, BIG5 and Unicode. Chip support English

The synthesis of letters, when encountering English words, pronounce them alphabetically. The amount of text synthesized each time can reach 200 bytes.

ÿText intelligent analysis and processing

The chip has the function of intelligent analysis and processing of text.

Fragments can be correctly identified and processed according to the built-in text matching rules.

For example: "2008-12-21" is read as "December 21, 2008", "10:36:28" is read as "Ten Thirty-Six: Twenty the state of the

Eight seconds", "28°C" is read as "twenty-eight degrees Celsius", and so on.

ÿAbility to process polyphonic characters and Chinese surnames

For texts with polyphonic characters, for example: "The top priority of the current work is to ensure the smooth progress of key projects in Chongqing despite all the difficulties.

OK, resolutely refuse to repeat construction", the chip can automatically analyze the text, distinguish the pronunciation of polyphonic characters in the text and synthesize the correct pronunciation.

ÿ16 -level digital volume control and 6-level word speed control

The chip can realize 16-level digital volume control, the volume is louder and wider. The foreground volume for playing text and the background volume for playing background music can be separated Open control, more freedom.

ÿBackground music can be selected during text broadcasting

15 pieces of background music are integrated in the chip, and background music can be selected during any broadcast.

ÿPrompt tone

The chip integrates 19 sound prompts, which can be used for information reminders, alarms and other functions in different occasions.

The chip integrates 23 polyphonic music, which can be used as polyphonic SMS prompt tone or polyphonic ringtone.

ÿSupport multiple control commands

Control commands include: synthesize text, stop synthesis, pause synthesis, resume synthesis, status query, enter Power Down mode, change communication

Baud rate and other control commands. The controller sends control commands through the communication interface to control the chip.

ÿSupport multiple text control tags

The chip supports a variety of text control tags. Text control marks can be sent by sending "synthetic command", adjust the volume, set the number pronunciation,

Set the speech rate of words, set whether to read punctuation, etc.

ÿQuery the working status of the chip

Support multiple ways to query the working status of the chip, including: query the status pin level, return automatically by reading the chip, send query command to get the return of the working status of the chip.

ÿSupport low power consumption mode

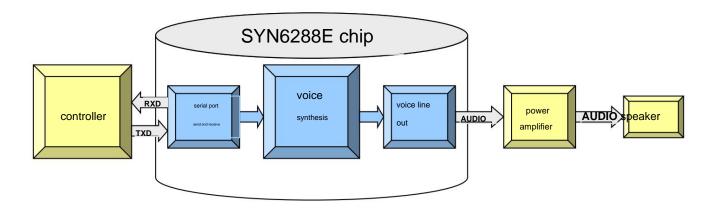
The chip supports Power Down mode. Use the control command to make the chip enter Power Down mode. Resetting the chip can make the chip from Power Down mode returns to normal working mode.

ÿSupport three communication baud rates

The communication baud rate supported by the chip: 9600bps, 19200bps, 38400bps.

1.4 Synthetic effect

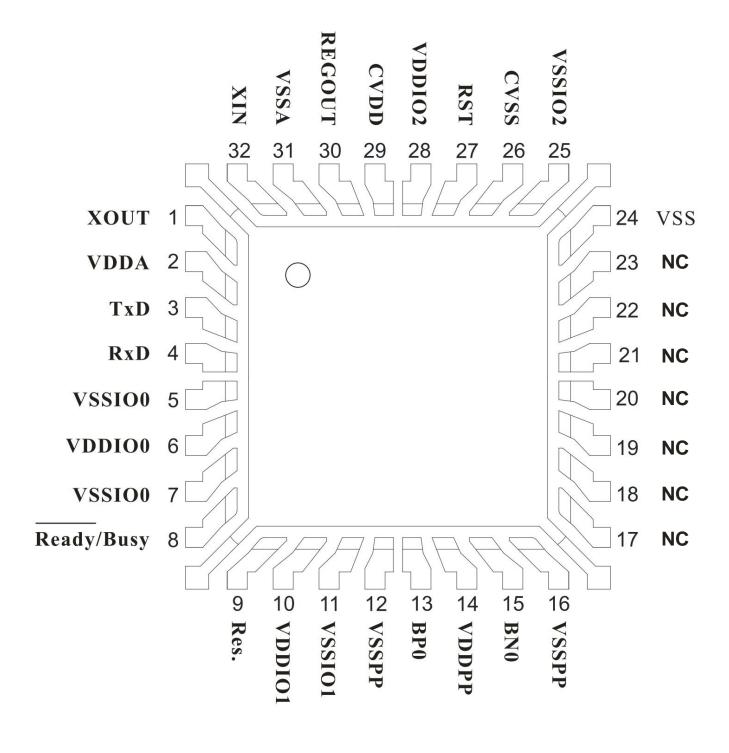
Naturalness	clarity	Correct rate	intelligibility
3.5	98%	96%	99%


1.5 System structure block diagram

 $The \ minimum \ system \ includes: controller \ module, \ SYN6288E \ speech \ synthesis \ chip, \ power \ amplifier \ module \ and \ speakers.$

The main controller and the SYN6288E speech synthesis chip are connected through the UART interface, and the controller can communicate with the SYN6288E speech synthesis chip through the communication interface.

The chip sends control commands and text, and the SYN6288E speech synthesis chip synthesizes the received text into a speech signal output, and the output signal is passed through the power After the amplifier is amplified, it is connected to the speaker for playback.


1.6 Ordering information

Chip model	Package information				
	package name	Package Description			
SYN6288E	LQFP32L	32-pin chip 7mm X 7mm X 1.4mm			

1.7 IC pin structure

1.7.1 Pin View

1.7.2 Pin definition

serial number	pin	illustrate	numbered	d pins	illustrate
1	XOUT	High speed crystal output	17	NC	
2	VDDA	Positive pole of internal regulated power supply	18	NC	
3	TxD	Serial data transmission, initial baud Rate 9600bps	19	NC	
4	RxD	Serial data reception, initial baud Rate 9600bps	20	NC	
5	VSSIO0	Negative pole of bus module 0 power supply	twenty one	NC	
6	VDDIO0 Bus Module 0	Power Positive	twenty two	NC	
7	VSSIO0	Negative pole of bus module 0 power supply	twenty three	NC	
8	Ready/Busy-STATUS pin	Low level indicates that CHIP is idle and can receive commands sent by the host computer orders and data; High level means CHIP is busy, positive Performing speech synthesis and broadcasting;	seeming flour	VSS	Negative pole of power supply - and speech synthesis The chip substrate is integrated and must be integrated with the Ground (GND) for PCB routing Or negative plate (VSS) connected.
9	Res.	Res pin	25	VSSIO2 Bus modu	le 2 power negative pole
10	VDDIO1 bus module 1	power supply positive	26	CVSS processor	power negative
11	VSSIO1	Negative pole of bus module 1 power supply	27	RST	Chip reset, low level trigger with
12	VSSPP	Speech output module power supply neg	ative 28	VDDIO2 bus modu	e 2 positive pole
13	BP0	Push DAC voice output 1	29	CVDD processor	power supply positive
14	VDDPP voice output n	nodule power supply positive 30		REGOUT voltage a	uto-regulation output
15	BN0	Push DAC voice output 2	31	VSSA Negative pole	of internal regulated power supply
16	VSSPP	Speech output module power negative	pole 32	XIN High speed	crystal oscillator input

2. Chip control method

2.1 Control commands

The host computer sends commands to the SYN6288E chip in the format of command frames. The SYN6288E chip performs corresponding operations according to the command frame, and sends to the upper computer Returns the command operation result.

The SYN6288E chip provides a variety of control commands, the list is as follows:

command function	illustrate
Speech synthesis play command	Synthesize the text sent this time
Change communication baud rate command	Communication baud rate after change
stop compositing command	Stop the current compositing action
Pause compositing command	Pause an ongoing composition
restore compositing command	Continue compositing paused text
	Query the working status of the current chip: the host computer can check the status of the chip through the
Obic status	Inquiry command" to judge whether the TTS module is working normally, and to obtain the relevant
Chip status query command	According to the parameters, return 0x4E to indicate that the chip is still being synthesized, and return 0x4E to indicate
	Indicates that the chip is idle.
Command to enter Power Down mode	Make the chip enter Power Down mode from normal working mode, after reset
Command to enter Fower Down mode	recover

2.2 Chip Backhaul

After receiving the control command frame, the chip will send a 1-byte status feedback to the host computer, and the host computer can judge the current state of the chip according to the feedback.

working status.

When the SYN6288E chip is successfully initialized, it will send a one-byte "initialization successful" return.

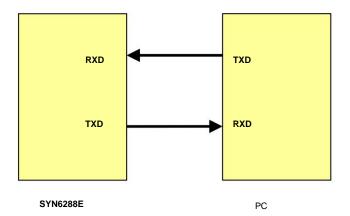
After receiving the command frame, the SYN6288E chip will judge whether the command frame is correct or not. If the command frame is correct, it will return

If the command frame is wrong, it will return a "receive failure" return.

When the SYN6288E chip receives the status query command, if the chip is in the working state of broadcasting, it will return "is broadcasting" back, if the chip

If the chip is in an idle state, a "chip idle" return is returned. After a frame of data is synthesized, the chip will automatically return a "chip idle" response.

pass.



Return type name	return data	Triggering conditions
Init successful return	0x4A	The chip is initialized successfully
Received the correct command frame back	0x41	received successfully
0x45 is returned when an unrecognized command frame	s received	Failed to receive
chip broadcast status return	0x4E	After receiving the "Status Query Command Frame", the chip is in the broadcasting state
Chip idle state feedback	0x4F	When a frame of data is synthesized, the chip enters the idle state and returns 0x4F; or After receiving the "Status Query Command Frame", the chip returns 0x4F when it is idle

3. communication method

3.1 Asynchronous serial communication (UART) interface

SYN6288E provides a set of full-duplex asynchronous serial communication (UART) interface to realize data transmission with microprocessor or PC. SYN6288E Use TxD, RxD and GND to realize serial communication. Among them, GND is used as the ground signal. SYN6288E chip supports UART interface communication mode, The commands and data sent by the host computer are received through the UART interface, and the maximum length of the data allowed to be sent is 206 bytes.

Please refer to **10.7 - "Series"** for the specific circuit

Port Communication Reference Circuit* description

3.2 Communication transmission byte format

- 1. Initial baud rate: 9600 bps
- 2. Start bit: 1
- 3. Data bits: 8

- 4. Check digit: None
- 5. Stop bit: 1
- 6. Flow control: no

38	26	- 67 - 27	1257	-53
Start bit D0 D	1 DO PO D	1 DC DC D-	7 01 11-11	
Start bit DO D	1 ロン 103 ロ	4 115 116 17	/I Stoninit	
Clart bit Po B	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10000	Cloppoil	
	I I		1 1	
			ala la	

4. Communication frame definition and communication control

4.1 Command frame format

The chip supports the following command frame format: "frame header FD + data area length + data area" format. (maximum 206 bytes)

All commands and data sent by the host computer to the SYN6288E chip need to be encapsulated and transmitted in the form of "frame".

			Data area					
	Frame	Data area length		(less than or equal to 203				
frame structure	header (1 byte)	(2 bytes)	Command	Command	bytes) Text to be	XOR check (1		
			word (1 byte)	parameter (1 byte)	sent (less than or equal to 200 byte	s) byte)		
data	0xFD	0xXX 0xXX	0xXX	0xXX	0xXX	0xXX		
211	defined as sixteen	high byte first		The length result b	a appointment with the previous "Ideta area.	an ash !!		
illustrate	Hexadecimal "0xFD"	low byte after	The length must be consistent with the previous "data area length"					

Note: The actual length of the data area (including command words, command parameters, text to be sent, XOR check) must be the same as the length of the data area defined after the frame header.

Strictly consistent, otherwise the chip will report receiving failure.

4.2 Control commands supported by the chip

	Data area (less than or equal to 203 bytes)							
	Command		(Command		Text to be	XOR check 1	
	word 1 byte			parameter		sent<=200 bytes	byte	
value	corresponding function	byte high 5 bits	corresponding function	1 byte byte low 3 bi	corresponding function			
		Value: 0	1. Value 0: said not to add	0	Set the text to: GB2312 encoding format			
0x01 Spe	0x01 Speech synthesis playback command	Value: 1 Value: 2	Background music	1	Set the text to: GBK encoding format	Two of the text to be synthesized		
oxor opo		Value: 3		2	Set the text to: BIG5 encoding format	binary content		
		Value: 14 Value: 15	Background music	3	Set the text to: UNICODE encoding format			
				0	Set the communication baud rate: 9600bps		all words before section (including frame	
0x31	Set communication baud rate command (initial baud rate 9600bps)	0 no fun	0 no function		unction 1	Set the communication baud rate: 19200bps		header, head of data area degree bytes) do
	30000ps)			2	Set the communication baud rate: 38400bps		Exclusive or check out bytes	
0x02 stop	synthesis command					no text		
0x03 Paus	e synthesis command							
0x04 resto	0x04 restore synthesis command no parameters							
0x21 Chip	status query command							
0x88	Chip enters Power Down mode command							

The host computer can use the command words and command parameters in the data area to realize various functions of the speech synthesis chip.

4.3 Special instructions related to command frames

4.3.1 Sleep and wake-up instructions

ÿThe chip will not sleep actively, it will sleep only after receiving the sleep command frame sent by the host computer.

ÿAfter the chip enters sleep mode, the host computer needs to wake up the chip first, and then send command frame data to the chip; (note: after waking up, an interval of 16 milliseconds before sending the command data)

ÿAfter sleep is awakened (for example, hardware wake-up or software wake-up), no valid command frame data sent by the host computer is received within 10 seconds (standby time) (speech synthesis play command, baud rate setting command, stop synthesis command, Suspend synthesis command, resume synthesis command, status query command), the chip will re-enter sleep (it will be regarded as interference wake-up and ignored). (Note: Only after the chip has entered dormancy, it will have 10 seconds to wake up from standby and go to sleep again)

4.3.2 Instructions for setting the baud rate

ÿThe default initial baud rate is 9600bps; if the host computer needs to change the baud rate, it needs to be sent at an interval of 16 milliseconds after sending the set baud rate command frame

Send other command

frames. ÿlf you want to change the baud rate, you have to resend the command frame for changing the baud rate

every time the system is reset. \ddot{y} After sending the command frame for changing the baud rate, pause for several hundred

milliseconds, and then change the baud rate of the host. \ddot{y} Both 9600bps and 19200bps baud rate communication transmissions are very stable (no matter

whether the chip is synthesizing broadcasting or idle) **ÿBecause** the system time slice is close to the transmission time slice: the 38400bps baud rate communication transmission chip is very stable when idle; When the chip is synthesizing and broadcasting, the upper computer is not very stable when sending data again, and the probability of successful reception and reception failure is about 50%. Remind the user: when the chip is synthesizing and broadcasting, if you use the 38400bps baud rate to send new data again (interrupt the current playback), you can send the "stop" command repeatedly to ensure that you receive the "successful reception" signal before sending a new one. data.

4.3.3 Other special instructions

- ÿ 1. In the same frame of data, the sending interval between each byte cannot exceed 8ms; the sending interval between frames must exceed 8ms.
- ÿ 2. When the SYN6288E chip is synthesizing text, if it receives another effective synthesis command frame, the chip will immediately stop the current

The text being synthesized is then synthesized to the newly received text.

ÿ 3. The length of the text to be sent must be less than or equal to 200 bytes. If the actual sent length is greater than 200 bytes, the chip will report failure to receive. ÿ 4. When the user is continuously playing text content, after receiving the "chip idle" byte (ie 0x4F) after the previous frame of data has been played, it is best to delay about 1ms before sending the next frame

of data. $\boldsymbol{\ddot{y}}$ 5. When the user is playing text content

continuously (that is, the next frame of data will be sent immediately after the previous frame of data is played), it is recommended that the user

The data is framed at punctuation marks such as marks, question marks, exclamation marks, and semicolons. Because data transmission takes time, frames are divided at punctuation marks, coherent better, and can avoid the phenomenon that the phrase is cut off hard (for example, the word "bank", "silver" in the previous frame of data, "line" in the next frame data).

4.4 Example of command frame

4.4.1 Speech synthesis play command

frame structu	re header	data area	data area					
name structu	e neadei	length	command word	command parameter	text to send	XOR check		
Data 0xFD	0x00 0x0B		0x01	0x00	Yuyin Tianxia 0xD3 0xEE 0xD2 0xF4 0xCC 0xEC 0xCF 0xC2	0xC1		
Data frame 0	xFD 0x00 0x	x0B 0x01 0x00 0xD3	0xEE 0xD2 0x	xF4 0xCC 0xEC 0	xCF 0xC2 0xC1			
Description	Play the tex	t "Yuyin Tianxia" in t	he text encodi	ng format "GB231	2", without background music			
frame structu	ro boador	data area			data area			
name structu	e neauei	length	command word	command parameter	text to send	XOR check		
Data 0xFD	0x00 0x0B		0x01	0x01	Yuyin Tianxia 0xD3 0xEE 0xD2 0xF4 0xCC 0xEC 0xCF 0xC2	0xC0		
Data frame 0	xFD 0x00 0x	x0B 0x01 0x01 0xD3	0xEE 0xD2 0x	xF4 0xCC 0xEC 0	xCF 0xC2 0xC0	•		
Description	Play the tex	t "Yuyin Tianxia" in t	he text encodi	ng format "GBK",	without background music			
frame structu	a baadar	data area	Data area					
name structu	e neadei	length	command word	command parameter	to be sent text	XOR check		
Data 0xFD	0x00 0x0B		0x01	0x02	Yuyintianxia 0XA6 0x74 0xAD 0XB5 0Xa4 0XD1 0XA4 0x55	0xBB		
Data frame 0	xFD 0x00 0x	x0B 0x01 0x02 0XA6	0x74 0xAD 0	KB5 0XA4 0XD1 0	XA4 0x55 0xBB	1		
Description	Play the tex	t "Yuyin Tianxia" in t	he text encodi	ng format of "BIG	", without background music			
f		data area			data area			
frame structu	re neader	length	command word	command parameter	Text to be sent	XOR check		
Data 0xFD	0x00 0x0B		0x01	0x03	Yuyin Tianxia 0x8b 0xed 0x97 0xf3 0x59 0x29 0x4e 0x0b	0Xc3		
Data frame 0	xFD 0x00 0	x0B 0x01 0x03 0x8b	0xed 0x97 0xf	3 0x59 0x29 0x4e	0x0b 0xC3	•		

frame structur	ro booder	data area			data area		
rrame structu	e neader	length	command word	command parameter	Text to be sent	XOR check	
Data 0xFD	0x00 0x0B		0x01	0x09	Yuyin Tianxia 0xD3 0xEE 0xD2 0xF4 0xCC 0xEC 0xCF 0xC2	0xC8	
Data frame 0	xFD 0x00 0	x0B 0x01 0x09 0xD3	0xEE 0xD2 0x	F4 0xCC 0xEC 0	xCF 0xC2 0xC8		
Explain that v	vhen playing t	the text "Yuyin Tianxia"	whose text enco	ding format is "GBK	", the background music 1 will be played at the same time		
frame structur	ro boodor	data area			data area		
name structu	e neauei	length	command word	command parameter	Text to be sent	XOR check	
Data 0xFD	0x00 0x0B		0x01	0x79	Yuyin Tianxia 0xD3 0xEE 0xD2 0xF4 0xCC 0xEC 0xCF 0xC2	0xB8	
Data frame 0	xFD 0x00 0	x0B 0x01 0x79 0xD3	0xEE 0xD2 0x	xF4 0xCC 0xEC 0	xCF 0xC2 0xB8		
Explain that v	vhen playing	the text "Yuyin Tianxia"	whose text enco	oding format is "GBK	t, the background music will be played at the same time 15		
		data area			data area		
frame structu	re neader	length	command word	command parameter	text to send	XOR check	
Data 0xFD	0x00 0x08		0x01	0x01	[v11] 0x5B 0x76 0x31 0x31 0x5D	0x85	
Data frame 0	Data frame 0xFD 0x00 0x08 0x01 0x01 0x5B 0x76 0x31 0x5D 0x85						
Description	Description Play the text "[v11]", the chip will recognize it as: set the volume to level 11						

4.4.2 Set baud rate command

Eromo otruct	ure frame header data a	roo longth	data area					
Frame structi	are frame freatier data a	irea lerigiri	command word	command parameter	text to send	XOR check		
data	0xFD	0x00 0x03	0x31	0x00		0xCF		
Data frame 0	Data frame 0xFD 0x00 0x03 0x31 0x00 0xCF							
illustrate	Set the baud rate: 9600bps							
Frame struct	ura frama baadar data d	and I an ath	Text to be					
Frame structure frame header data a	nea lengin							
Traine struct	are frame freatier data a	irea lerigili	command word	command parameter	sent in the data area	XOR check		
data	0xFD	0x00 0x03	command word	command parameter	sent in the data area	XOR check 0xCE		
data		0x00 0x03		·	sent in the data area			

Eromo etruet	ure frame header data a	roo longth	data area				
Frame structi	are frame fleader data a	nea lengui	command word	command parameter	text to send	XOR check	
data	0xFD	0x00 0x03	0x31	0x02		0xCD	
Data frame 0	Data frame 0xFD 0x00 0x03 0x31 0x02 0xCD						
illustrate	Set the baud ra	Set the baud rate: 38400bps					

4.4.3 Stop synthesis command

Eramo struct	ure frame header data a	roa longth	data area					
Frame structi	are traine neader data a	irea lerigiri	command word	command parameter	text to send	XOR check		
data	0xFD	0x00 0x02	0x02			0xFD		
Data frame 0	Data frame 0xFD 0x00 0x02 0x02 0xFD							
illustrate	stop compositing co	stop compositing command						

4.4.4 Pause synthesis command

Eramo etruet	ure frame header data a	roa longth	data area				
Frame structi	are frame fleader data a	irea ierigiri	command word	command parameter	text to send	XOR check	
data	0xFD	0x00 0x02	0x03			0xFC	
Data frame 0	Data frame 0xFD 0x00 0x02 0x03 0xFC						
illustrate	Pause compositing command						

4.4.5 Restoring Synthesis Commands

Eromo etruet	ure frame header data a	roo longth						
Frame Struct	are frame fleader data a	irea ierigiri	command word	command parameter	sent in the data area	XOR check		
data	0xFD	0x00 0x02	0x04			0xFB		
Data frame 0	Data frame 0xFD 0x00 0x02 0x04 0xFB							
illustrate	restore compositing of	restore compositing command						

4.4.6 Chip status query command

Frame structi	ure frame header data a	rea length	data area					
Trame struct	are traine freduct data a	rea lengui	command word	command parameter	text to send	XOR check		
data	0xFD	0x00 0x02	0x21			0xDE		
Data frame 0.	Pata frame 0xFD 0x00 0x02 0x21 0xDE							
illustrate	Use this command to judge whether the TTS module is working normally, and obtain the corresponding return parameters. Returning 0x4E indicates that the chip is still being synthesized							
iliustrate	During broadcasting, return 0x4F to indicate that the chip is in an idle state							

4.4.7 Chip enters Power Down mode command

Frame structi	ure frame header data a	rea length					
Traine struct	are traine freduct data a	ica icrigari	command word	command parameter	sent in the data area	XOR check	
data	0xFD	0x00 0x02	0x88			0x77	
Data frame 0	Data frame 0xFD 0x00 0x02 0x88 0x77						
illustrate	Enter POWER DOWN state command, restore after reset						

5. Text Control Tags

5.1 List of text control tags

effect	Identity type	Control	Detailed description	chip default
Set foreground text playback volume (including display sound)	global [v	?]	? is the volume value, value: 0~16 (where 0 is mute) ? When it is other unsigned integers, it will be treated as the maximum volume	[v10]
Set background music volume	global [m	?]	value of 16. ? is the volume value, value: 0~16 (where 0 is mute) ? When it is other unsigned integer, it will be treated as the maximum	[m4]
Set word speed (for natural reading)	global	[t?]	volume value of 16. ? When it is other unsigned integers, it will be treated as the highest word speed value of 5 Level 0 is the slowest word speed, and level 5 is the fastest word speed. Note: For	[t4]

			Word-by-Word reading method does not support word speed adjustment	
Set up a number processing strategy	global	[n?]	? is 0, automatically judged ? When it is 1, the number is processed as a number ? is 2, the number is treated as a value ? When it is other unsigned integer, it will be treated as integer 0	[n0]
Set the pronunciation of "1" in the number globally	[y?]		? is 0, "1" is read as "unit" when combining numbers ? is 1, "1" is read as "one" when combining numbers ? When it is other unsigned integer, it will be treated as integer 0	[y0]
Set the prompt tone processing policy	global[x?]		? is 0, do not use prompt sound ? is 1, and the prompt tone is used by default ? When it is other unsigned integer, it will be treated as integer 0	[x1]
Set whether to read the punctuation	global [b?		? is 0, do not read punctuation ? is 1, read punctuation ? When it is other unsigned integer, it will be treated as integer 0	[b0]
Set text reading method	global [o?		? is 0, set to natural reading mode ? Set to 1, set to Word-By-Word mode ? When it is other unsigned integer, it will be treated as integer 0	[00]
Restore default global compositing parameters		[d] All follow	ng global flags reverted to default	
Force the next Chinese character to be pronounced by s	urname Temp	orary [r]	The 1 Chinese character after this control mark is forced to be read as a surname (mainly used for polyphonic character surname processing), if there is no one Chinese character immediately, this control is invalid	
Force the last two Chinese characters to form a two-characters	ter word tempo	rarily [2]	The 2 Chinese characters after this control mark are forced to be read as "two-character words", if there is no Followed by 2 Chinese characters, this control is invalid	
The last three Chinese characters are mandatory to form a three-ch	aracter word tem	oorarily[3]	The 3 Chinese characters after this control mark are forced to be read as "three-character words", if there is no Followed by 3 Chinese characters, this control is invalid	

Notice:

- 1) All control signs are half-width characters.
- 2) The control flag needs to be sent in the format of the speech synthesis command, and the special control mark is synthesized as text, that is, the synthesis command is "frame header + number

 Data area length + synthetic command word + text encoding format + special control mark text" format.
- 3) The control flag is a global control flag, that is, as long as it is used once, it will be sent to the chip without resetting the chip or powering off.

All text in will be under its control unless the corresponding [d] is used to restore the default setting.

- 4) When the chip is powered off or reset, the chip will return to all default values, and the original set flags will lose their effect and need to be reset.
- 5) Those that do not conform to the above recognizable "control marks" or are in the wrong format shall be treated as ordinary characters and numbers

Note: [d]

[v?] [m?] These 3 control marks cannot appear in the playback text at will (easy to understand ambiguity), only the following applications (other control control tags do not have this constraint)

ÿSent as a frame of data alone, at this time, it will affect the data starting from the next frame--suitable for separate change

ÿ1st frame: [v5] ÿ1st frame: Welcome

Explanation: Set the foreground volume to level 5

Explanation: Play "Welcome" at 5 levels of foreground volume

ÿSent together with other control marks as a frame of data, at this time, it takes effect on the data starting from the next frame. Note: the control mark after the

The priority of the record is higher than the previous control flag--suitable for host computer initialization call

ÿFrame 1: [d][v5][m2][o0] Explanation: restore the default global variables first, then set the foreground volume to level 5, background

Level 2, read aloud in a natural way

ÿFrame 2: Welcome

Explanation: Play "Welcome" at 5 levels of foreground volume and 2 levels of background volume

ÿ Put it at the beginning of the playing text and send it together with the playing text, at this time, it will take effect on the data at the beginning of this frame. -- fit and play text one

Send and change from

here $\ddot{y}Frame$ 1: [v6][m2] Welcome to Speech Synthesis Chip

Explanation: Starting from the data of this frame, press 6 levels of foreground volume 2

Level background volume playback: Play "Welcome to Speech Synthesis Chip" with 6 levels of foreground volume and 2 levels of background volume.

5.2 Example of using text control tags

5.2.1 Mark [v?] -- foreground playback volume

sample text	chip explained
	Starting from the data of this frame, it will be played according to the foreground volume of level 6: that is, it will be played according to level 6 foreground volume
[v6] Welcome to Speech Synthesis Chip	Play "Welcome to Speech Synthesis Chip" in large quantities, and the subsequent data frames will also
	Play at 6 levels of foreground volume.

5.2.2 Mark [m?]--Background music volume

sample text	The chip explains that
	starting from the data of this frame, it will be played at level 2 background volume: that is, it will be played at level 2 background volume
[m2] Welcome to Speech Synthesis Chip	Play "Welcome to Speech Synthesis Chip" in large quantities, and the subsequent data frames will also
	Play at level 2 background volume.

5.2.3 Mark [t?] --- word speed

sample text	The chip		
Welcome to [t0] Beijing Yuyintianxia [t5] Speech Synthesis Chip	explanation will play "Welcome" at the default speed of 4 normal words, and then press 0		
	The slowest words play "Beijing Yuyin Tianxia" at the speed of speech, and then press level 5 for the fastest wi		
	Speech speed playback "speech synthesis chip"		

5.2.4 token[n?] -- number processing strategy

sample text	The chip explains		
[n0]234343545	the chip to judge automatically.		
	Read as: two hundred and three thousand four hundred and thirty-four thousand three thousand five hundred and forty-five		
[n1]234343545	The chip is forced to synthesize digital strings in the way of numbers.		
	Read as: two three four three four three five four five		
[n2]234343545	The chip is forced to synthesize digital strings in a numerical way.		
	Read as: two hundred and three thousand four hundred and thirty-four thousand three thousand five hundred and forty-five		

5.2.5 Mark [y?] -- the reading method of number 1

sample text	The chip explains		
[y0]010-62986600	that the chip synthesizes the "1" in the text of the number according to the reading method of "unit". read:		
	Zero one zero, six two nine eight six six zero zero		
[y1]010-62986600	The chip synthesizes "1" in the text of the number according to the reading method of "one". read		
<u> </u>	Zero one zero, six two nine eight six six zero zero		

Note: This flag is valid only when synthesizing number type text.

5.2.6 Mark [x?] -- beep strategy

sample text	The chip		
[x0]ringa sounda	explanation is not processed according to the prompt tone, and it is directly read into English letters: ri sounda		
[x1]ringa sounda	Process according to the prompt tone: play the chord ringa, and then play the information prompt tone sounda		

5.2.7 mark [b?] -- punctuation strategy

sample text	Chip		
[b0] Welcome, come in!	interpretation punctuation marks are not read out, read as: "Welcome, please come in"		
[b1] Welcome, come in!	Read out the punctuation marks as: "Welcome comma please enter exclamation Number*		

5.2.8 Mark [o?] -- Text reading method

sample text	chip explained
[o0] Welcome to the Chinese speech synthesis chip developed by Yuyintianxia	read in a more natural way
[o1] Welcome to use the Chinese speech synthesis chip developed by Yuyintianxia to read alo	d by Word By Word

5.2.9 Mark [d] --- Restore default

sample text	The chip		
[v11][n1]123, [y1]010-62986600, [r1]Qu Tianfang	explanation is read according to the 11-level volume: 123, 010, 6298660		
	Zero, song (qu3) Tian Fang		
	All global control flags are restored to default!		
[d]123, 010-62986600, Qu Tianfang	According to the default 8-level volume, it is read as: one hundred and twenty-three, zero one zero, six two nine eigh		
	Six Six Zero Zero, Qu (qu1) Tian Fang		

5.2.10 Mark [r] -- pronunciation by last name

Example text	Chip explanation		
Shan Xiaohu of the unit came over [r]	Shan Xiaohu: read as: dan1 xiao2 hu3		
Shan Xiaohu of the unit came over	Shan Xiaohu: Pronounced as: shan4 xiao2 hu3		

5.2.11 Marks [2] and [3]--mandatory word

Note: This chip can correctly segment phrases to more than 98%. Due to the complexity of Chinese semantics, it is impossible for any product to be 100% correct. answer

The following are the unsegmented sentences that we specially screened out.

With this function, you can manually intervene to segment phrases, which can make the synthesis more natural to a certain extent.

sample text	The chip		
Beijing Dongzhimen Station has arrived	explains that the chip will be divided into: /Beijing East Zhi Gate Station To/ (sounds a bit unnatural)		
Beijing[3] Dongzhimen Station has arrived	Manual intervention, split into: /Beijing Dongzhimen Station arrived/ (sounds more natural)		

Entered Guangshun North Street	The chip will be divided into: /has entered Guang Shun Beijie/ (sounds a bit unnatural)		
Has entered [2] Guangshun North Street	Manual intervention, split into: /has entered Guangshun Beidajie/ (sounds more natural)		

5.2.12 Example of initialization synthesis

sample text	Chip explanation			
	first restores the default global variables, sets the foreground volume to level 8, and sets the background			
The first frame data: [d][v8][m2][t5][y0][x1][o0]	The volume is level 2, the phrase speed is set to level 5, and the synthetic number is set to "1"			
	Pronounce it as "ÿ", set the prompt sound, and set the natural reading method			
Frame 2 data: Welcome to speech synthesis chip	Play "Welcome to Speech Synthesis Core" according to the variables set in the last frame of data			
	piece"			

6. Prompt sound effect

6.1 List of voice prompts

The chip provides 25 segments of sound prompts, which can be selected as information prompts according to the application occasion. The following list is the current chip

The name and sound type of the built-in prompt tone:

Voice prompt tone (19 songs in total)								
No. Nam	e Sound Type		play time		No. Nam	e Sound Type		play time
1	sounda erro	r sound soundb	1s		14	sound	alarm 2s	
2	card swiping	success 1s soundc car	rd		15	sound	alarm 1s	
3	swiping suc	cess 1s			16	soundp	alarm 3s	
4	soundd card	swiping success 1s			17	soundq emerg	ency alarm 1s	
5	sounde card	swiping success 1s so	undf		18	soundr emerge	ncy alarm 4s	2
6	laser sound	soundg doorbell	1s		19	sounds	Cuckoo 1s	
7	sound		1s		20	soundt	Prompt tone 1s	
8	Soundh doo	rbell soundi	1s		Twenty one	soundu	Prompt tone 1s	
9	phone ringto	ne 2s soundj phone rin	gtone		twenty two	soundv	Prompt tone 1s	
10	1s				twenty three	soundw	Prompt tone 1s	

11	soundk broa	adcast tone 2s soundl to	ne	twenty four	soundx	Prompt tone 1s	}
12	soundm ton	e	1s	25	soundy promp	tone 1s	
13			1s				

6.2 List of chord prompts

The chip provides 23 pieces of polyphonic music as prompts, which can be widely used in public information broadcasting occasions. The following list is the current The name and playing length of the built-in tone of the chip.

Chord prompts (8 songs in total)							
serial nui	mber name	name	play time				
1	msga	1s	5	msge	2s		
2	msgb	1s	6	msgf	3s		
3	msgc	1s	7	msgg	4s		
4	msgd	1s	8	msgh	5s		

Polyphonic ringtones (15 songs in total)								
Serial nu	Serial number name Playing time Serial number name Playing time							
1	ringa	60s	9	ringi	35s			
2	ring b	70s	10	ringj	25s			
3	ringc	27s	11	ring	18s			
4	ring	65s	12	ringl	38s			
5	the ring	60s	13	ring	60s			
6	ring f	57s	14	ring	23s			
7	ring	60s	15	ringo	5s			
8	the ring	53s						

Polyphonic ringtones can be used not only as polyphonic ringtones, but also as material for background music

Note: There is no particularity in the use of the prompt tone, it is the same as the synthesis command for synthesizing ordinary text. However, it is important to note that the beep name

When there are English letters in the front or back, you need to use punctuation marks, spaces, carriage returns, etc. to separate them from other letters, so that the chip can automatically recognize them.

For example: send the text "sounda, hello!", sounda can synthesize the corresponding SMS prompt tone, but if the sent text

This "soundahello!", sounda can not synthesize the prompt sound, but directly read the letter "SOUNDA".

7. How the host computer calls the SYN6288E chip

7.1 Simple calling method

The simple call is for the case where the application is relatively simple. Users don't need to care about the working status of SYN6288E, only need to send text, SYN6288E

The received text will be synthesized into speech output.

In the case of simple calling, as long as the host computer establishes a serial communication connection with SYN6288E, it can send synthetic commands to realize text

The host computer does not need to ignore the feedback information and status output of SYN6288E, and SYN6288E will output the synthesized voice.

Tip: If the previous frame of text has not been synthesized, sending text to SYN6288E will interrupt the previous synthesis and execute a new synthesis.

7.2 Standard calling method

For general situations, the host computer needs to determine the working status of SYN6288E to more precisely control the work of the SYN6288E chip: for example, it is necessary to

Make sure that the next piece of text is synthesized after the last text is fully synthesized.

The application example is as follows: Suppose the text to be synthesized is 300 bytes, which exceeds the maximum text length that a command frame of the chip can hold (200 characters

- 1. The upper computer first sends a text synthesis command frame to the chip, carrying text less than 200 bytes;
- 2. The upper computer waits for the SYN6288E chip to return the return message that the playback is complete, until it receives the chip return "0x4F", indicating that the previous text has been completed.

The synthesis is completed; or use the status pin of the query chip, send a query command, and confirm that the text of the previous frame has been synthesized through the queried information.

3. The host computer sends a text synthesis command frame to the SYN6288E chip again, and sends out the remaining 100 bytes of text information.

7.3 How to query the working status of the chip

The working status of SYN6288E can be queried through hardware and software.

ÿHardware method: By querying the level of the output pin Ready/Busy, the working status of the chip can be judged. When Ready/Busy is high level,

Indicates that the chip is in the state of synthesizing and playing text; when Ready/Busy is low, it indicates that the chip is in an idle state.

ÿSoftware mode: Query the working status of the chip through the chip status query command frame. When the host computer sends a status query command frame to the chip,

The chip will immediately send the current chip status feedback to the host computer. The upper computer judges whether the current chip is empty according to the returned data of the chip status.

Idle state or broadcast state.

8. The coding system and scope of chip identification

SYN6288E supports the following 4 encoding systems: GB2312, GBK, BIG5, Unicode.

8.1 GB2312 coding system

recognition type	Identify code range	Remark
Half-width ASCII symbol area 0x	00 0x7F	
Full-width symbol area 0xA	1A0 0xA3FE	
Chinese character area	0xB0A1 0xF7FE A total of 6768 Ch	inese characters

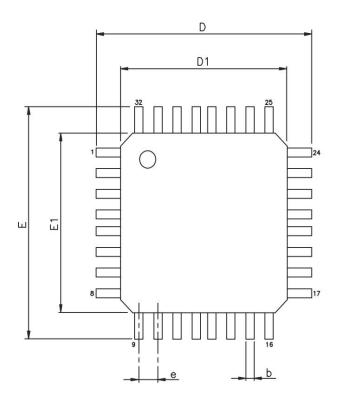
8.2 GBK coding system

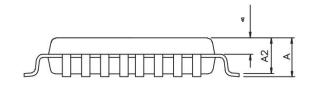
recognition type	Identify code range	Remark
Half-width ASCII symbol area 0x	00 Full 0x7F	
width symbol area 0xA1A0		
	0x8140 0xA0FE	
Chinese character area	0xAA40 0xFEFE	A total of 21003 Chinese characters

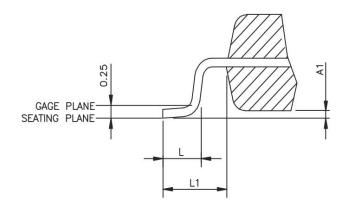
8.3 BIG5 coding system

Identification type Identifi	Remark	
ASCII symbol area 0x00	0x7F	
Full-width symbol area 0xA		
Chinese character area	0xA440 0xF9FE A total of 13060 C	hinese characters

8.4 Unicode encoding system


recognition type	Identify code range	Remark
	0x00 area,	
Full-width symbol area	0x30 area,	
	0xFF area,	
Chinese character area	0x4E00 0x9FFF A total of 20902 C	ninese characters


Note: For the transmitted codes that are not recognizable, the silence will be silenced for tens of milliseconds.



9. Product Specifications

9.1 Encapsulating data

size	Minimum (mm) M	aximum (mm)	size	Minimum (mm) M	aximum (mm)
А		1.60	E.	8.80	9.20
A1	0.05	0.15	E1	6.90	7.10
A2	1.35	1.45	е	0.80BSC	
A3	0.59	0.69	b	0.33	0.41
D.	8.80	9.20	L	0.45	0.75
D1	6.90	7.10	L1	1.00	REF

Chip package diagram

9.2 Limit parameters

project	Symbol	Symbol minimum value		unit
voltage	VDD-V	-0.3	5.1	V
Input voltage	out voltage VIN GND-0.3		VDD+0.3	V
Operating temperature	TOP -35		85	ÿ
storage temperature TSTG		-55	125	ÿ

Note: Exceeding the limit parameters listed in the table will result in incorrect operation or damage to the device.

9.3 Electrical Characteristics

project	symbol	the smallest value	Typical Value	Maximum Ur	hit	condition
Operating Voltage VDD 2.4	ļ		3.3	5.1V		
Standby current	ISBY	-	2.0	-	uA	VDD=3V, no load
Operating Current	IOPR-		10	- mA	VDD=3V,	no load
Pull-Up resistor of TxD RPU -			800	-	Kÿ	VDD=3V, no load
Input current of RxD	IIH	-	-	10.0uA		VDD=3V, VIN=3V
Drive current of TxD	IOD	-	4	- mA	VDD=3V,	VO=2.4V
Sink Current of Status IOS		-	6	- mA	VDD=3V,	VO=0.4V
Drive current of BP0	IOD		150	- mA	VDD=3V,	BP0=1.5V
Sink Current of BP0	IOS		150	- mA	VDD=3V,	BP0=1.5V
Drive current of BN0 IOD			150	- mA	VDD=3V,	BN0=1.5V
Sink Current of BN0	IOS		150	- mA	VDD=3V,	BN0=1.5V
Crystal Oscil. Freq FOSC -			16.0	- MHz	2	VDD=3V

9.4 Power Consumption When Playing Synthetic Sound

	Test voltage: 3.0V t	typ	Test voltage 4.5V	
Test items	max typ max			
Current when	0.2uA		1uA	
sleeping, current when working but	3.3 mA		4 mA	
not playing: volume level 1, playing text current:	50 mA		50 mA	
Volume 6 Play Text Current:	70 mA		80 mA	
Volume 10 Play Text Current:	130 mA		150 mA	
Volume 16 Play Text Current:	190 mA		280 mA	
Volume 1 Play Chord Current:	40 mA		40 mA	
Volume 6 Play Chord Current:	60 mA		70 mA	
Volume 10 Play Chord Current:	90 mA		100 mA	
Volume 16 levels playing chords Current:	140 mA		200 mA	

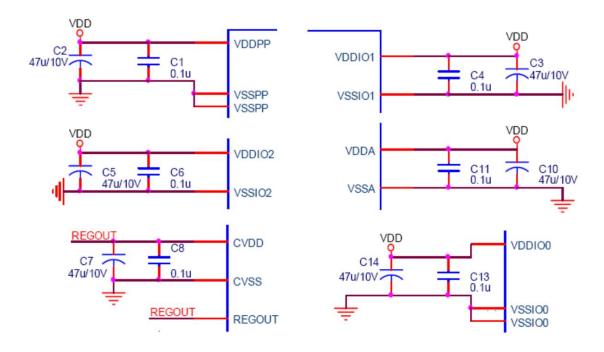
9.5 Normal working mode

When SYN6288E is in normal working mode, Ready/Busy indicates the working status of the chip. During speech synthesis or vocalization, Ready/Busy

Output high level, indicating that it is working; when the synthesis is finished, Ready/Busy output low level to send data transmission to the upper computer (or microprocessor).

Send the request until the end of the data transfer.

9.5 Sleep (Low Power Consumption) Operating Mode


SYN6288E will enter the sleep state after receiving the sleep command word from the main control system to save power consumption; and can receive any Italian command word to wake up the system.

Note: It takes about 16 milliseconds to enter the working state after waking up after hibernation.

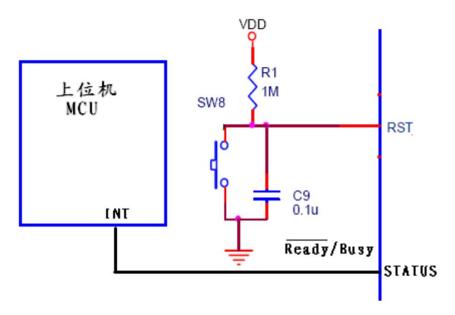
10. reference circuit

10.1 Reference Circuit of Power Supply Module

Remark 1: SYN6288E has 6 sets of external power supplies, and each set of power supplies uses a 47uF and a 0.1uF capacitor; if the user wants to save costs, the user can use a 0.1uF capacitor on each set of power supplies, and VDDPP, and VDDA two sets of power supply, each with a 47uF capacitor. Remark 2: The external power supply uses 3 batteries, or VDD =

3.3V~~4.2V Remark 3: Instructions for using the voltage automatic adjustment output REGOUT

SYN6288E provides a voltage automatic adjustment output REGOUT for the CVDD processor power module—that is, a linear voltage regulator. The output voltage of this **linear** voltage regulator is designed to be: 2.8V±0.2V. **Its characteristics are:**


ÿInput external supply voltage: VDD ÿOutput current:

20mA ÿOutput voltage: 2.6V~~3.0V

Remark 4: In view of the difference in the quality of power supplies on the market, it is recommended that users do not use critical limit voltages, such as: 5.0V power supply; it is recommended that the VDD value of the external **power** supply range from 3.3V to 4.2V, not higher than 4.5V or lower **at 3.0V**.

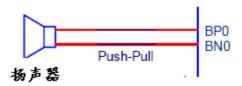
10.2 Reset circuit and status indication circuit

Note: Ready/Busy When the STATUS pin signal is low level, it means the chip is waiting to receive data. This pin can be used during system design

Connect to the interrupt input source of the MCU, generate a falling edge interrupt request to send data, to show that the upper computer MCU can send data to the speech synthesis chip.

10.3 Speaker output of SYN6288E

(1) In order to output sound in user application, SYN6288E built-in pusher

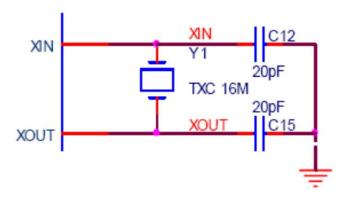

Pull-type (Push-Pull) DAC, can directly drive the speaker, into

Voice broadcast. And the built-in DAC circuit module of SYN6288E

block, using the VDDPP/VSSPP power supply module, the specific power supply

Please refer to Sections (10.1) and (10.2) for circuit description, and the power supply voltage value

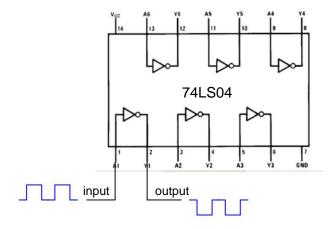
It can be powered independently of other power packs. (see picture on the right)



(2) Power amplifier reference circuit

See "Power Amplifier Reference Circuit V1.0.pdf"

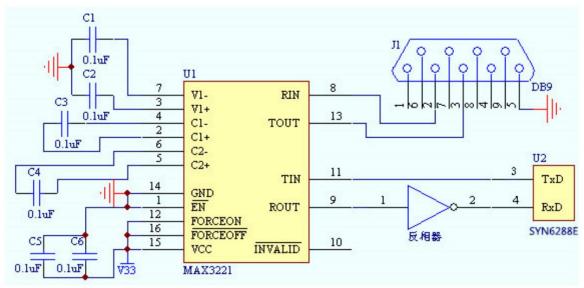
10.4 SYN6288E external high-speed crystal oscillator


10.5 Serial communication inverter circuit

The serial communication data sent by the host computer to SYN6288E must be inverted data. The upper computer can choose one of the following two inverting methods:

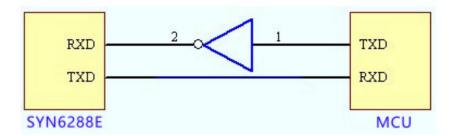
ÿProgram code inversion method: use an inversion program in the software program of the host computer to send the data bit, start

Bits and stop bits are reversed; start and stop bits are uncontrolled and cannot be reversed by program code.

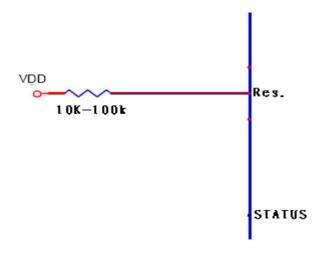

ÿCommunication circuit hardware inverting method: add a hardware inverting circuit before the upper computer sends data to SYN6288E:

10.6 Reference circuit for serial communication

(a) The upper computer is the reference circuit of the PC



Remark 1: An inverter should be added between SYN6288E and MAX3221. For details, please refer to the data sheet of MAX3221


Remark 2: The external power supply V33 loaded by MAX3221 in the above reference circuit should be 3.3V+0.3V.

(b) The upper computer is the MCU reference circuit

Remarks: When the upper computer sends data to SYN6288E, an inverter must be added in the middle, and the section "Serial Communication Reverse Circuit" must be followed description in .

10.7 The correct connection of the Res pin (that is, the fifth pin)

Note: It can also be considered similar to the connection method of the reset pin RST, configuring a smaller capacitor (other groups of power supply configuration larger capacitors), so that Before each power supply of SYN6288E is powered, the Res. pin can be set to high level! This can effectively prevent the sudden interference of the external power supply.

Note: The important thing is that when powering on, the system design should try to ensure that the power supply of each group of SYN6288E rises to the normal potential slower than Res to the normal potential.

11. Example program to send synthesized text

11.1 C language sample program

Next, take 51 single-chip microcomputer as the host computer as an example, use C51 language to realize a program example of text synthesis, assuming that the content of the text to be synthesized.

The content is: "Welcome to Yuyin Tianxia SNY6288E Chinese Speech Synthesis Chip", the following is the program module for sending a frame of TTS text data.


```
#include <reg51.h> #include
<string.h>
void main(void) { /
char code text[] = {"Welcome to Yuyintianxia SNY6288E Chinese Speech Synthesis Chip"}; unsigned
             char headOfFrame[5]; unsigned char length ;
             unsigned char ecc = 0; unsigned int
             i = 0; length = strlen(text);
                                                                  //Define checksum
                                                                  //Need to send the length of the text
/*******Initialization of the serial port****************************/// At 11.0592MHz, set
                                          the baud rate to 9600bps, working mode 2 TL1 = 0xFA; TH1 = 0xFA; TMOD
             = 0x20; SCON
             = 0x50; PCON
             = 0x80; EA = 0;
             REN = 1; TI = 0;
                                         // Serial port working mode 1, allowing to receive
             RI = 0; TR1 = 1;
                                          //Transmit interrupt flag position
                                          zero //Receive interrupt flag position
                                          zero //Timer 1 is used as baud rate generation
/*******Sending process*******************/ // Construct the frame header FD
             0xFD; // Construct the high byte of
                                                                  headOfFrame[0] =
             headOfFrame[2] = length + 3; // the length of the data area <math>headOfFrame[1] = 0x00;
             Construct the low byte of the length of the data area headOfFrame[3] = 0x01; //construct the
             command word: synthetic playback command headOfFrame[4] = 0x01; //construct the command
             parameter: the encoding format is GBK
             for(i = 0; i < 5; i++) {
                                                                  //Send the constructed 5 header bytes sequentially
                   ecc=ecc^(headOfFrame[i]); //Exclusive OR check on the sent bytes
                   SBUF = headOfFrame[i]; while
                   (TI== 0) \{;\}
                                                                  //Waiting for the send interrupt flag to
                   TI = 0:
                                                                   be set //Clear the send interrupt flag
             for(i = 0; i < length; i++) {
                                                                  //Send the text data to be synthesized in sequence
                   ecc=ecc^(text[i]);
                                                                  // Exclusive OR check on the sent bytes
                   SBUF = text[i]; while
                   (TI == 0) \{;\}
                   TI = 0;
             }
            SBUF=ecc:
                                                                  //Finally send the check byte
            while (TI== 0) {;}
            TI=0; //
            while(1);
```


11.2 Assembly language sample program

The following is an example of the assembly language used by the 51 single-chip microcomputer to control the upper computer, and demonstrates sending the text "Yuyin Tianxia" to the chip for synthesis.

The GBK code of "Yuyin Tianxia" is: "Yu": 0xd3ee "Sound": 0xd2f4 "Sky":

0xccec "Down": 0xcfc2

;Crystal oscillator

11.0592MHz ecc EQU 40H ;Define checksum byte

ORG 0030H

TABLE: DB 0xD3,0xEE,0xD2,0xF4,0xCC,0xEC,0xCF,0xC2

; GBK code of "Yuyin Tianxia"

ORG 0000H

LJMP MAIN

ORG 0200H

MAIN:

CLR EA ; Serial port initialization

MOV TMOD, #20H; Timer 1 works in mode 2

 $\ensuremath{\mathsf{MOV}}$ TH1, #0FAH ; load timer initial value, baud rate 9600

MOV TL1, #00H

SETB TR1 ;Start timer 1

MOV SCON, #50H ;Serial port working mode 1, allowing to receive

MOV PCON, #80H; Baud rate doubled; send

CLR TI; interrupt flag position zero

CLR RI Receive interrupt flag bit zero

MOV A, #0FDh ;Frame header

MOV ecc, A FD ;Assign initial value to XOR check

MOV SBUF, A unit;serial port send

JNB TI, \$ CLR TI

MOV A,#00h ;High byte of data area length

XRL ecc,A MOV SBUF, A JNB TI, \$ CLR TI

MOV A,#0Bh ;Low byte of data area length XRL ecc,A MOV SBUF, A JNB TI, \$ CLR TI MOV A,#01h ;command word: synthetic playback command XRL ecc,A MOV SBUF, A JNB TI, \$ CLR TI MOV A,#01h ;Command parameters: encoding format is GBK XRL ecc,A MOV SBUF, A JNB TI, \$ CLR TI MOV R7,#8 ;The total number of bytes of the text to MOV R6,#0 be played;Sent byte count MOV DPTR,#TABLE LOOP: MOV A,R6 MOVC A,@A+DPTR XRL ecc,A ;Play "Yuyin Tianxia" MOV SBUF, A JNB TI, \$ CLR TI INC R6 DJNZ R7, LOOP MOV A,ecc ; Send checksum byte MOV SBUF, A JNB TI, \$ CLR TI SJMP\$ **END**

Notice:

1. After sending, the feedback signal from the chip can be received. If it is "41" and "4F", it means that the text has been received correctly and the synthesized broadcasting has been completed. It is idle; if it receives "45", it means that the text has not been received or synthesized correctly, and it needs to be resent or reset.

2. The Demo above mainly explains the protocol issues that need to be followed in the sending process; after sending the statement, a judgment program should be added to determine whether the sending is complete.

The working status of the current chip can be judged by query or interrupt, and then the next data can be sent.

12. appendix

12.1 References

- \ddot{y} ÿMAX3221—3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH +15-kV ESD PROTECTIONÿ
- ÿ "Inverter Integrated Circuit "SN74LS04/D—Hex Inverter" Device Manual"
- ÿ "SNAP01—Class AB Power Amplifier Device User Manual"
- ÿ "OSYNO 6188 Embedded Speech Synthesis Chip—User Manual"
- ÿ "SYN6288 Chinese Speech Synthesis Chip Data Manual V1.8"