

Getting Started with
MicroPython

on the
Raspberry Pi Pico

Toronto Raspberry Pi Meetup Group
2021-02-11

Stewart Russell – scruss@scruss.com

What, another one?

● Not a Linux machine:
a microcontroller

● Custom silicon, designed by
Raspberry Pi Foundation

● Lots of I/O
● Great documentation
● $5.25 CAD, any qty
● Arduino killer

Image credit: Raspberry Pi Foundation

RP2040 Overview

● Dual-core ARM Cortex-M0+ at
133 MHz

● 264 KB RAM
● No Flash storage

(Pico has 2 MB external)
● 26 × multi-function GPIO pins
● 2 × SPI, 2 × I2C, 2 × UART, 3

× 12-bit ADC, 16 × PWM
● 8 × PIO state machines

Image credit: Raspberry Pi Foundation

So where do I get one?

● In theory, you can buy as
many as you want, but:
– BuyaPi: Sold Out
– Canakit: Sold Out

(preorders ship Feb 28)
– Elmwood: Sold Out
– Newark, Digikey: on order

My Canada Post experience
● BuyaPi: ordered Jan 21,

arrived Feb 2.
Average speed: house spider

● Elmwood: ordered Jan 27,
arrived Feb 3.
Average speed: 3-toed sloth

● Don’t use Canada Post
because 😷

What is MicroPython?

● Python 3 implementation
● Small: 256 KB flash, 16 KB RAM

(minimum)
● Compiled on-chip; standalone
● Subset of standard Python library
● Core developers were hired to

implement for Pico
● Now includes ARMv6M assembler

micropython.org

MicroPython Differences

● System libraries are typically limited, e.g.:
– Strings are always UTF-8; 8-bit codecs excluded
– Time is monotonic (fractional) seconds: no timezones or DST
– No CSV, numpy, pip (→ upip), …

● .py → .mpy (like .pyc) compilation isn’t automatic
● Hardware interface modules:

– machine: for hardware features like pins, PWM, I²C, ADC, …
– rp2: RP2040 PIO assembler, raw Flash access

● help() docstrings short or absent: see online docs

Flashing MicroPython

● Pico firmware is distributed
as UF2 images

● Hold BOOTSEL while
plugging in

● Pico appears as a USB
storage device

● Drag/copy UF2 to PICO
storage

● Pico reboots; USB disappears

Image credit: Raspberry Pi Foundation

Editing: Thonny

● Raspberry Pi Foundation’s
recommended editor

● Installed by default
● Includes loading/saving to

Pico flash
● Has a simple graph tool
● … plus firmware updater
● … and (Raspberry) REPL

sorry not sorry

(and no, I don’t know why the graph broke)

“but my $EDITOR …!!1!”

● You don’t have to use Thonny
● … it’s just more work if you don’t.
● The command-line MicroPython tool with REPL access is

rshell:
https://github.com/dhylands/rshell/tree/pico

● Make sure you get the this branch, as it handles the quirks
of the Pico’s RTC

● … and yes, the Foundation has shipped yet another device
which doesn’t have battery backup on its clock ☹

https://github.com/dhylands/rshell/tree/pico

All of the Pins

raspberrypi.org/documentation/pico/getting-started

Documentation

● This is absolutely stellar for a board at launch + 3 weeks
● Data sheets, API guides, code, Fritzing parts … all at

raspberrypi.org/documentation/pico/getting-started

Unexpected Quirks

It’s a new board, and folks are just learning, but:

1 ADC: default analogue-to-digital setup is quite noisy

2 PWM: duty cycle changes if frequency is changed

3 UART Serial: has no wait/timeout, will lock if read and no
data waiting

4 Dual core/threading: seems to be not well understood yet

Worked example

● Trevor Woerner used an MCP3008 with a thermistor and
Raspberry Pi last month:

● Let’s use a Pico
● … which is cheaper than

an MCP3008 (by 50¢ !)
● … and can act as a serial

datalogger, perhaps
writing to a Raspberry Pi over USB serial.

Image credit: Trevor Woerner
twoerner.blogspot.com/2021/01/sensing-temperature-with-raspberrypi.html

Wiring

● Pins used:
– ADC2 (pin 34)
– 3V3 (pin 36)
– AGND (pin 33)

● 10 kΩ resistor between
3V3 and thermistor

● 10 kΩ @ 25 °C thermistor,
β = 3977

Code!
from machine import Pin, ADC
from time import sleep
from math import log

led = Pin(25, Pin.OUT)
adc = ADC(2)
r25 = 10000
beta = 3977

while True:
 r = 10000.0 / (65535 / float(adc.read_u16()) - 1)
 lnr = log(r / r25)
 ts_C = -273.15 + 1/(1/298.15 + lnr/beta)
 print('%5.1f' % (ts_C))
 led.toggle()
 sleep(2)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

