
CP/M Plus
(CP/M (R) Version 3)
Operating System

Programmers Guide

COPYRIGHT
 Copyright 01983 Digital Research Inc. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language
or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of Digital Research Inc., 60
Garden Court, Box DRI, Monterey, California 93942.

DISCLAIMER
 DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY
IMPLIED WARRANTIES OF MER- CHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. Further, Digital Research Inc. reserves the right to revise this
publication and to make changes from time to time in the content hereof without any person of
such revision or changes.

NOTICE TO USER
 From time to time changes are made in the filenames and in the files actually included on the
distribution disk. This manual should not be construed as a representation or warranty that such
files or facilities exist on the distribution disk or as part of the materials and programs distributed.
Most distribution disks include a "README.DOC" file. This file explains variations from the
manual which do constitute modification of the manual and the items included therewith. Be sure
to read this file before using the software.

TRADEMARKS
 CP/M and Digital Research and its logo are registered trademarks of Digital Research Inc.
ASM, CP/M Plus, LINK-80, MAC, MP/M, MP/M II, and RMAC are trademarks of Digital
Research Inc. Intel is a registered trademark of Intel Corporation.
 The CPIM Plus (CP/M Version 3) Operating System Programmer's Guide was printed in the
United States of America.
 First Edition: January 1983
 Second Edition: April 1983

Foreword

 CP/M@ 3 is a microcom uter operating system designed for the Intelg 8080, Intel 8085, or other
compatible microprocessor. To run CP/M 3, your computer must have an ASCII console, which
includes a keyboard and screen, or another display device, from one to sixteen disk drives and a
minimum of 32K of memory space. To support additional memory beyond the 64K addressing
limit of the processors listed above, CP/M 3 can also support bank-switched memory. The
minimum memory requirement for a banked system is 96K.

This manual describes the programming environment of CP/M 3, and is written for experienced
programmers who are writing application software in the CP/M 3 environment. It assumes you
are familiar with the system features and utilities described in the CP/M Plus (CP/M Version 3)
Operating System User's Guide and the Programmer's Utilities Guide for the CP/M Family of
Operating Systems. It also assumes that your CP/M 3 system has been customized for your
computer's hardware and is executing as described in the CP/M Plus (CP/M Version 3) Operating
System User's Guide. If you need to customize your system, please refer to the CP/M Plus
(CP/M Version 3) Operating System System Guide.
Section 1 of this manual describes the components of the operating system, where they reside in
memory, and how they work together to provide a standard operating environment for application
programs. Section 2 describes how an application pro- gram can call on CP/M 3 to perform serial
input and output and manage disk files. Section 3 provides a detailed description of each
operating system function. Section 4 presents example programs.
The CP/M Plus (CP/M Version 3) Operating System Programmer's Guide contains five
appendixes. Appendix A describes the CP/M 3 System Control Block, and defines its fields.
Appendix B supplies the format for the Page Relocatable Program. Appen- dix C tells you how
to generate System Page Relocatable files. Appendix D lists the ASCII Symbol Table, and
Appendix E summarizes BDOS functions.

 Table of Contents

 1 Introduction to CP/M 3
 1.1 Banked and Nonbanked Memory Organization 1-2
 1.2 System Components 1-5
 1.3 System Component Interaction and Communication 1-7
 1.3.1 The BDOS and BIOS 1-7
 1.3.2 Applications and the BDOS 1-8
 1.3.3 Applications and RSXs 1-9
 1.4 Me'mory Region Boundaries 1-9
 1.5 Disk and Drive Organization and Requirements 1-11
 1.6 System Operation 1-13
 1.6.1 Cold Start Operation 1-14
 1.6.2 CCP Operation 1-16
 1.6.3 Transient Program Operation 1-22
 1.6.4 Resident System Extension Operation 1-23
 1.6.5 SUBMIT Operation 1-26
 1.7 System Control Block 1-27
 2 The BDOS System Interface
 2.1 BDOS Calling Conventions 2-1
 2.2 BDOS Serial Device I/O 2-2
 2.2.1 BDOS Console I/O 2-3
 2.2.2 Other Serial I/O 2-6
 2.3 BDOS File System 2-7
 2.3.1 File Naming Conventions 2-9
 2.3.2 Disk and File Organization 2-11
 2.3.3 File Control Block Definition 2-13
 2.3.4 File Attributes 2-16
 2.3.5 User Number Conventions 2-18
 2.3.6 Directory Labels and XFCBs 2-19
 2.3.7 File Passwords 2-21
 2.3.8 File Date and Time Stamps 2-23
 2.3.9 Record Blocking and Deblocking 2-25
 2.3.10 Multi-Sector I/O 2-26
 2.3.11 Disk Reset and Removable Media 2-27
 2.3.12 File Byte Counts 2-28

v

Table of Contents (continued)

 2.3.13 BDOS Error Handling 2-28
 2.4 Page Zero Initialization 2-34
 3 BDOS Function Calls
 4 Programming Examples
 4.1 A Sample File-To-File Copy Program 4-1
 4.2 A Sample File Dump Utility 4-5
 4.3 A Sample Random Access Program 4-10
 4.4 Construction of an RSX Program 4-20
 4.4.1 The RSX Prefix 4-21
 4.4.2 Example of RSX Use 4-22

 Appendixes

 A System Control Block A-1
 B PRL File Generation B-1
 B. 1 PRL Format B-1
 B. 2 Generating a PRL B-2
 C SPR Generation C-1
 D ASCII and Hexadecimal Conversions D-1
 E BDOS Function Summary E-1

vi

Table of Contents (continued)

 Tables

 2-1. Valid Filename Delimiters 2-10
 2-2. Logical Drive Capacity 2-12
 2-3. BDOS Interface Attributes 2-17
 2-4. Password Protection Modes 2-22
 2-5. BDOS Functions That Test for Password 2-22
 2-6. SFCB Subfields Format 2-24
 2-7. Register A BDOS Error Codes 2-31
 2-8. BDOS Directory Codes 2-32
 2-9. BDOS Error Flags 2-33
 2-10. BDOS Physical and Extended Errors 2-34
 2-11. Page Zero Areas 2-35
 3-1. Function 6 Entry Parameters 3-8
 3-2. Edit Control Characters (Nonbanked CP/M 3) 3-13
 3-3. Edit Control Characters (Banked CP/M 3) 3-14
 3-4. System Control Block 3-70
 3-5. Program Return Codes 3-90
 3-6. FCB Format 3-98
 A- 1. SCB Fields and Definitions A-1
 B-1. PRL File Format B-1
 D- 1. ASCII Symbols D-1
 D-2. ASCII Conversion Table D-2
 E-1. BDOS Function Summary E-1

vii

Table of Contents (continued)

 Figures

 1-1. Nonbanked System Memory Organization 1-2
 1-2. Banked System Memory Organization 1-3
 1-3. Banked Memory with Bank 1 in Context I 1-4
 1-4. CP/M 3 Logical Memory Organization 1-5
 1-5. System Components and Regions in Logical Memory 1-6
 1-6. System Modules and Regions in Logical Memory 1-10
 1-7. Disk Organization 1-12
 1-8. RSX File Format 1-25
 2-1. XFCB Format 2-19
 2-2. Directory Label Format 2-20
 2-3. Directory Record with SFCB 2-23

viii

Section 1
Introduction to CP/M 3

This section introduces you to the general features of CP/M 3 with an emphasis on how CP/M 3
organizes your computer's memory. The section begins by describing the general memory
organization of banked and nonbanked systems and defines the programming environment they
have in common. It then shows how CP/M 3 defines memory space into standard regions for
operating system modules and executing programs. Subsequent paragraphs describe the
components of the operating system, how they communicate with each other and the application
program, and in greater detail where each component and program is located in memory. After a
brief introduction to disk organization, the final section gives examples of system operation.
CP/M 3 is available in two versions: a version that supports bank-switched memoy, and a version
that runs on nonbanked systems. CP/M 3 uses the additional memory available in banked systems
to provide functions that are not present in the nonbanked version. For example, the banked
version of CP/M 3 supports file passwords; the nonbanked version does not. However, because a
nonbanked system treats passwords the same way as a banked system does when password
protection is not enabled, an application program can run under either system without
modification.

1-1

 1.1 Banked and Nonbanked Memory Organization

The memory organization for a nonbanked CP/M 3 system is very simple, as shown in Figure 1-1.

 Figure 1-1. Nonbanked System Memory Organization

 In the nonbanked organization, physical memory consists of a single, contiguous
 region addressable from OOOOH up to a maximum of OFFFFH (64K-1). The shaded
 region below the operating system represents the memory space available for the
 loading and execution of transient programs. The clear area above the operating
 system represents space that GENCPM can allocate to the operating system for disk
 record buffers and directory hash tables, as described in the CP/M Plus (CP/M Ver-
 sion 3) Operating System System Guide. The minimum size of this area is determined
 by the specific hardware requirements of the host microcomputer system.

1-2

1.1 Baked/Nonbanked Organization CP/M 3 Programmer's Guide

 To expand memory capacity beyond the 64K address space of an 8-bit micropro-
 cessor, CP/M 3 supports bank-switched memory in a special version called the banked
 system. In the banked version, the operating system is divided into two modules: the
 resident portion and the banked portion. The resident portion resides in common
 memory; the banked portion resides just below the top of banked memory in Bank 0.
 Figure 1-2 shows memory organization under the banked system.

Figure 1-2. Banked System Memory Organization

 In Figure 1-2, Bank 0 is switched in or in context. The top region of memory, the
 common region, is always in context; that is, it can always be referenced, no matter
 what bank is switched in. Figure 1-3 shows memory organization when Bank 1 is in
 context.

1-3

1.1 Baked/Nonbanked Organization CP/M 3 Programmer's Guide

Figure 1-3. Banked Memory with Bank 1 in Context

 From a transient programs perspective, Bank 1 is always in context. The operating
 system can switch to Bank 0 or other banks when performing operating system
 functions without affecting.the execution of the transient program. Any bank-switch-
 ing performed by the operating system is completely transparent to the calling pro-
 gram. Because the major portion of the operating system resides in Bank 0 in banked
 systems, more memory space is available for transient programs in banked CP/M 3
 systems than in nonbanked systems.
 The operating system uses the clear areas in Figures 1-2 and 1-3 for disk record
 buffers and directory hash tables. The clear area in the common region above the
 operating system represents space that can be allocated for data buffers by GENCPM.
 Again, the minimum size of this area is determined by the specific hardware require-
 ments of the host microcomputer system.

1-4

1.1 Baked/Nonbanked Organization CP/M 3 Programmer's Guide

 The banked version of CP/M 3 requires a minimum of two banks, Bank 0 and
 Bank 1, and can support up to 16 banks of memory. Bank numbers are generally
 arbitrary with the following exceptions: Bank 0 is the system bank and is in context
 when CP/M 3 is started. Bank 1 is the transient program bank, and must be contig-
 uous from location zero to the top of banked memory. This requirement does not
 apply to the other banks. However, common memory must be contiguous.
 The size of the common region is typically 16K. The only size requirement on the
 common region is that it must be large enough to contain the resident portion of the
 operating system. The maximum top of memory address for both banked and non-
 banked systems is 64K-1 (OFFFFH).
 In summary, no matter how physical memory is configured, or whether the oper-
 ating system is banked or nonbanked, CP/M 3 always organizes memory logically so
 that to a transient program in any CP/M 3 system, memory appears as shown in
 Figure 1-4.

 1.2 System Components
 Functionally, the CP/M 3 operating system is composed of distinct modules. Tran-
 sient programs can communicate with these modules to request system services. Fig-
 ure 1-5 shows the regions where these modules reside in logical memory. Note that
 from the transient program's perspective, Figure 1-5 is just a more detailed version
 of Figure 1-4.

1-5

1.1 Baked/Nonbanked Organization CP/M 3 Programmer's Guide

Figure 1-5. System Components and Regions in Logical Memory
 The Basic Input/Output System, BIOS, is a hardware-dependent module that defines
 the low-level interface to a particular computer system. It contains the device-driving
 routines necessary for peripheral device I/O.
 The Basic Disk Operating System, BDOS, is the hardware-independent module that
 is the logical nucleus of CP/M 3. It provides a standard operating environment for
 transient programs by making services available through numbered system function
 calls.
 The LOADER module handles program loading for the Console Command Proces-
 sor and transient programs. Usually, this module is not resident when transient pro-
 grams execute. However, when it is resident, transient programs can access this
 module by making BDOS Function 59 calls.
 Resident System Extensions, RSXS, are temporary additional operating system
 modules that can selectively extend or modify normal operating system functions.
 The LOADER module is always resident when RSXs are active.

1-6

 1.2 System Components CP/M 3 Programmer's Guide

 The Transient Program Area, TPA, is the region of memory where transient pro-
 grams execute. The CCP also executes in this region.
 The Console Command Processor, CCP, is not an operating system module, but is
 a system program that presents a human-oriented interface to CP/M 3 for the user.
 The Page Zero region is not an operating system module either, but functions
 primarily as an interface to the BDOS module from the CCP and transient programs.
 It also contains critical system parameters.
 1.3 System Component Interaction and Communication
 This section describes interaction and communication between the modules and
 regions defined in Section 1.2. The most significant channels of communication are
 between the BDOS and the BIOS, transient programs and the BDOS, and transient
 programs and RSXS.
 The division of responsibility between the different modules and the way they
 communicate with one another provide three important benefits. First, because the
 operating system is divided into two modules-one that is configured for different
 ardware environments, and one that remains constant on every computer-CP/M 3
 software is hardware independent; you can port your programs unchanged to differ-
 ent hardware configurations. Second, because all communication between transient
 programs and the BDOS is channeled through Page Zero, CP/M 3 transient programs
 execute, if sufficient memory is available, independent of configured memory size.
 Third, the CP/M 3 RSX facility can customize the services of CP/M 3 on a selective
 basis.
 1.3.1 The BDOS and BIOS
 CP/M 3 achieves hardware independence through the interface between the BDOS
 and the BIOS modules of the operating system. This interface consists of a series of
 entry points in the BIOS that the BDOS calls to perform hardware-dependent primi-
 tive functions such as peripheral device VO. For example, the BDOS calls the CONIN
 entry point of the BIOS to read the next console input character.
 A system implementor can customize the BIOS to match a specific hardware envi-
 ronment. However, even when the BIOS primitives are customized to match the host
 computer's hardware environment, the BIOS entry points and the BDOS remain
 constant. Therefore, the BDOS and the BIOS modules work together to give the CCP
 and other transient programs hardware-independent access to CP/M 3's facilities.

1-7

 1.2 System Components CP/M 3 Programmer's Guide

 1.3.2 Applications and the BDOS
 Transient programs and the CCP access CP/M 3 facilities by making BDOS func-
 tion calls. BDOS functions can create, delete, open, and close disk files, read or write
 to opened files, retrieve input from the console, send output to the console or list
 device, and perform a wide range of other services described in Section 3,"BDOS
 Functions."
 To make a BDOS function call, a transient program loads CPU registers with
 specific entry parameters and calls location 0005H in Page Zero. If RSXs are not
 active in memory, location 0005H contains a jump instruction to location
 BDOS_base + 6. If RSXs are active, location 0005H contains a jump instruction to
 an address below BDOS -base. Thus, the Page Zero interface allows programs to run
 without regard to where the operating system modules are located in memory. In
 addition, transient programs can use the address at location 0006H as a memory
 ceiling.
 Some BDOS functions are similar to BIOS entry points, particularly in the case of
 simple device I/O. For example, when a transient program makes a console output
 BDOS function call, the BDOS makes a BIOS console output call. In the case of disk
 I/O, however, this relationship is more complex. The BDOS might call many BIOS
 entry points to perform a single BDOS file I/O function.
 Transient programs can terminate execution by jumping to location OOOOH in the
 Page Zero region. This location contains a jump instruction to BIOS base+3, which
 contains a jump instruction to the BIOS warm start routine. The BIOS warm start
 routine loads the CCP into memory at location 100H and then passes control to it.
 The Console Command Processor is a special system program that executes in the
 TPA and makes BDOS calls 'ust like an application program. However, the CCP has
 a unique role: it gives the user access to operating system facilities while transient
 programs are not executing. It includes several built-in commands, such as TYPE and
 DIR, that can be executed directly without having to be loaded from disk. When the
 CCP receives control, it reads the uscr's command lines, distinguishes between built-
 in and transient commands, and when necessary, calls upon the LOADER module to
 load transient programs from disk into the TPA for execution. Section 1.6.2 describes
 CCP operation in detail.

1-8

1.3 Component Interaction CP/M 3 Programmer's Guide

 1.3.3 Applications and RSXs
 A Resident System Extension is a temporary additional operating system module.
 An RSX can extend or modify one or more operating system functions selectively.
 As with a standard BDOS function, a transient program accesses an RSX function
 through a numbered function call.
 At any one time there might be zero, one, or multiple RSXs active in memory.
 When a transient program makes a BDOS function call, and RSXs are active, each
 RSX examines the function number of the call. If the function number matches the
 function the RSX is designed to extend or modify, the RSX performs the requested
 function. Otherwise, the RSX passes the function request to the next RSX. Noninter-
 ceptcd functions are eventually passed to the BDOS for standard execution.
 RSXs are loaded into memory when programs containing RSXs are loaded. The
 CP/M 3 utility, GENCOM, can attach RSXs to program files. When attaching RSXS,
 GENCOM places a special one page header at the beginning of the program file. The
 CCP reads this header, learns that a program has attached RSXS, and loads the RSXs
 accordingly. The header itself is not loaded into memory; it merely indicates to the
 CCP that RSX loading is required.
 The LOADER module is a special type of RSX that supports BDOS function 59,
 Load Overlay. It is always resident when RSXs are active. To indicate RSX support
 is required, a program that calls function 59 must have an RSX header attached by
 GENCOM, even if the program does not require other RSXS. When the CCP
 encounters this type of header in a program file when no RSXs are active, it sets the
 address at location 0006H in Page Zero to LOADER-base + 6 instead of
 BDOS_base + 6.
 1.4 Memory Region Boundaries
 This section reviews memory regions under CP/M 3, and then describes some
 details of region boundaries. It then relates the sizes of various modules to the space
 avialable for the execution of transient programs. Figure 1-6 reviews the location of
 regions in logical memory.

1-9

1.3 Component Interaction CP/M 3 Programmer's Guide

 Figure 1-6. System Modules and Regions in Logical Memory
 First note that all memory regions in CP/M 3 are page-aligned. This means that
 regions and operating system modules must begin on a page boundary. A page is
 defined as 256 bytes, so a page boundary always begins at an address where the low-
 order byte is zero.
 The term High Memory in Figure 1-6 denotes the high address of a CP/M 3
 system. This address may fall below the actual top of memory address if space above
 the operating system has been allocated for directory hashing or data buffering by
 GENCPM. The maximum top of memory address for both banked and nonbanked
 systems is 64K-1 (OFFFFH).
 T'he labels BIOS-base, BDOS_base, and LOADER_base represent the base addresses
 of the operating system regions. These addresses always fall on page boundaries. The
 size of the BIOS region is not fixed, but is determined by the requirements of the
 host computer system.

1-10

1.3 Component Interaction CP/M 3 Programmer's Guide

 The size of the BDOS region differs for the banked and nonbanked versions of
 CP/M 3. In the banked version, the resident BDOS size is 6 pages, 1.5K. In the
 nonbanked system, the BDOS size ranges from 31 pages, 7.75K, to 33 pages, 8.25K,
 depending on system generation options and BIOS requirements.
 RSXs are page aligned modules that are stacked in memory below LOADER_base
 in memory. In the configuration shown in Figure 1-6, location 0005H of Page Zero
 contains a jump to location RSX(N)_base + 6. Thus, the memory ceiling of the TPA
 region is reduced when RSXs are active.
 Under CP/M 3. the CCP is a transient program that the BIOS loads into the TPA
 region of memory at system cold and warm start. The BIOS also loads the LOADER
 module at this time, because the LOADER module is attached to the CCP. When the
 CCP gains control, it relocates the LOADER module just below BDOS_base. The
 LOADER module handles program loading for the CCP. It is three pages long.
 The maximum size of a transient program that can be loaded into the TPA Is
 limited by LOADER-base because the LOADER cannot load a program over itself.
 Transient programs may extend beyond this point, however, by using memory above
 LOADER - base for uninitialized data areas such as I/O buffers. Programs that use
 memory above BDOS-base cannot make BDOS function calls.
 1.5 Disk and Drive Organization and Requirements
 CP/M 3 can support up to sixteen logical drives, identified by the letters A through
 PI, with up to 512 megabytes of storage each. A logical drive usually corresponds to
 a physical drive on the system, particularly for physical drives that support remova-
 ble media such as floppy disks. High-capacity hard disks, however, are commonly
 divided up into multiple logical drives. Figure 1-7 illustrates the standard organiza-
 tion of a CP/M 3 disk.

1-11

 1.4 Region Boundaries CP/M 3 Programmer's Guide

Figure 1-7. Disk Organization
 In Figure 1-7, the first N tracks are the system tracks. System tracks are required
 only on the disk used by CP/M 3 during system cold start or warm start. The
 contents of this region are described in Section 1.6.1. All normal CP/M 3 disk access
 is directed to the data tracks which CP/M 3 uses for file storage.
 The data tracks are divided into two regions: a directory area and a data area. The
 directory area defines the files that exist on the drive and identifies the data space
 that belongs to each file. The data area contains the file data defined by the directory.
 If the drive has adequate storage, a CP/M 3 file can be as large as 32 megabytes.
 The directory area is subdivided into sixteen logically independent directories. These
 directories are identified by user numbers 0 through 15. During system operation,
 CP/M 3 runs with the user number set to a single value. The user number can be
 changed at the console with the USER command. A transient program can change
 the user number by calling a BDOS function.
 The user number specifies the currently active directories for all the drives on the
 svstem. For example, a PIP command to copy a file from one disk to another gives
 t@e destination file the same user number as the source file unless the PIP command
 is modified by the [G] option.

1-12

 1.4 Region Boundaries CP/M 3 Programmer's Guide

 The directory identifies each file with an eight-character filename and a three-
 character filetype. Together, these fields must be unique for each file. Files with the
 same filename and filetype can reside in different user directories on the same drive
 without conflict. Under the banked version of CP/M 3, a file can be assigned an
 eight-character password to protect the file from unauthorized access.
 All BDOS functions that involve file operations specify the requested file by file-
 name and filetype. Multiple files can be specified by a technique called ambiguous
 reference, which uses question marks and asterisks as wildcard characters to give
 CP/M 3 a pattern to match as it searches the directory. A question mark in an
 ambiguous reference matches any value in the same position in the directory filename
 or filetype field. An asterisk fills the remainder of the filename or filetype field of the
 ambiguous reference with question marks. Thus, a filename and filetype field of all
 question marks, ????????.???, equals an ambiguous reference of two asterisks,
 and matches all files in the directory that belong to the current user number.
 The CP/M 3 file system automatically allocates directory space and data area space
 when a file is created or extended, and returns previously allocated space to free
 space when a file is deleted or truncated. If no directory or data space is available for
 a requested operation, the BDOS returns an error to the calling program. In general,
 the allocation and deallocation of disk space is transparent to the calling program.
 As a result, you need not be concerned with directory and drive organization when
 using the file system facilities of CP/M 3.
 1.6 System Operation
 This section introduces the general operation of CP/M 3. This overview covers
 opics concerning the CP/M 3 system components, how they function and how they
 interact when CP/M 3 is running. This section does not describe the total function-
 ality of CP/M 3, but simply introduces basic CP/M 3 operations.
 For the purpose of this overview, CP/M 3 system operation is divided into five
 categories. First is system cold start, the process that begins execution of the operat-
 ing system. This procedure ends when the Console Command Processor, CCP, is
 loaded into memory and the system prompt is displayed on the screen. Second is the
 operation of the CCP, which provides the user interface to CP/M 3. Third is transient
 program initiation, execution and termination. Fourth is the way Resident System
 Ex,ensions run under CP/M 3. The fifth and final category describes the operation of
 the CP/M 3 SUBMIT utility.

1-13

1.5 Disk Organization CP/M 3 Programmer's Guide

 1.6.1 Cold Start Operation
 The cold start procedure is typically executed immediately after the computer is
 turned on. The cold start brings CP/M 3 into memory and gives it control of the
 computer's resources. Cold start is a four-stage procedure.
 In the first stage, a hardware feature, or ROM-based software associated with
 system reset, loads a small program, called the Cold Boot Loader, into memory from
 the system tracks of drive A (see figure 1-6). The Cold Boot Loader is usually 128 or
 256 bytes long.
 The Cold Boot Loader performs the second stage of the cold start process. It loads
 the CP/M 3 loader program, CPMLDR, into memory from the system tracks of the
 system disk and passes control to it. During this stage, the Cold Boot Loader can
 also perform other tasks, such as initializing hardware dependent I/O ports.
 CPMLDR performs the third stage in the cold start process. First, it reads the
 CPM3.SYS file from the data area of the disk. The CPM3.SYS file, which is created
 by the CP/M 3 system generation utility GENCPM, contains the BDOS and BIOS
 system components and information indicating where these modules are to reside in
 memory. Once CPMLDR has loaded the BDOS and BIOS into memory, it sends a
 sign-on message to the console and passes control to the BIOS Cold Boot entry point.
 If specified as a GENCPM option, CPMLDR can also display a memory map of the
 CP/M 3 system.
 CPMLDR is a small, self-contained version of CP/M 3 that supports only console
 output and sequential file input. Consistent with CP/M 3's organization, it contains
 two modules, an invariant CPMLDR-BDOS, and a variant CPMLDR -BIOS that is
 adapted to match the host microcomputer hardware environment. Cold start initiali-
 zation of VO ports and similar functions can also be performed in the CPMLDR-BIOS
 module during the third stage of cold start.
 In the banked version of CP/M 3, these first three stages of the cold boot procedure
 are performed with Bank 0 in context. The BIOS Cold Start function switches in
 Bank 1 before proceeding to stage four.

1-14

1.6 System Operation CP/M 3 Programmer's Guide

 The fourth and final stage in the cold start procedure is performed by the BIOS
 Cold Start function, Function 0. The entry point to this function is located at
 BIOS -base as described in Section 1.4. The BIOS Cold Start function begins by
 performing any remaining hardware initialization, and initializing Page Zero. To
 initialize Page Zero, the BIOS Cold Start function places a jump to BIOS base + 3,
 the BIOS Warm Start entry point, at location OOOOH, and a jump to BDOS-base + 6,
 the BDOS entry point, at location 0005H in memory.
 The BIOS Cold Start function completes the fourth stage by loading the CCP into
 the TPA region of memory and passing control to it. The CCP can be loaded from
 one of two locations. If there is sufficient space in the system tracks for the CCP, it
 is usually loaded from there. If there is not enough space in the system tracks, the
 BIOS Cold Start function can read the CCP from the file CCP.COM.
 On some banked systems, the CCP is also copied to an alternate bank, so that
 warm start operations can copy the CCP into the TPA from memory. This speeds up
 the system warm start operation, and makes it possible to warm start the system
 without having to access a system disk.
 When the CCP gains control, it displays a prompt that references the default disk.
 If a PROFILE.SUB submit file is present on the default drive, the CCP executes this
 submit file before prompting the user for a command.
 At this point, the cold start procedure is complete. Note that the user number is
 set to zero when CP/M 3 is cold started. However, the PROFILE submit file can set
 the user number to another value if this is desirable.
 The cold start procedure is designed so that the system tracks need to be initialized
 only once. This is accomplished because the system track routines are independent of
 the configured memory size of the CP/M 3 system. The Cold Boot Loader loads
 CPMLDR into a constant location in memory. This location is chosen when the
 system is configured. However, CPMLDR locates the BDOS and BIOS system com-
 ponents in memory as specified by the CPM3.SYS file. The CCP always executes at
 location 100H in the TPA. Thus, CP/M 3 allows the user to generate a new system
 with GENCPM, and then run it without having to update the system tracks of the
 system disk.

1-15

1.6 System Operation CP/M 3 Programmer's Guide

 1.6.2 CCP Operation
 The Console Command Processor provides the user access to CP/M 3 facilities
 when transient programs are not running. It also reads the user's command lines,
 differentiates between built-in commands and transient commands, and executes the
 commands accordingly.
 This section describes the responsibilities and capabilities of the CCP in some
 detail. The section begins with a description of the CCP's activities when it first
 receives control from the Cold Start procedure. The section continues with a general
 discussion of built-in commands, and concludes with a step-by-step description of
 the procedure the CCP follows to execute the user's commands.
 When the CCP gains control following a cold start procedure, it displays the
 system prompt at the console. This signifies that the CCP is ready to execute a
 command. The system prompt displays the letter of the drive designated as the initial
 default drive during GENCPM operation. For example, if drive A was specified as
 the initial default drive, the CCP displays the following prompt:
 A >
 After displaying the system prompt, the CCP scans the directory of the default drive
 for the file PROFILE.SUB. If the file exists, the CCP creates the command line
 SUBMIT PROFILE; otherwise the CCP reads the user's first command line by mak-
 ing a BDOS Read Console Buffer function call (BDOS Function 10).
 The CCP accepts two different command forms. The simplest CCP command form
 changes the default drive. The following example illustrates a user changing the
 default drive from A to B.
 A>B:
 B >
 This command is one of the CCP's built-in commands. Built-in commands are part
 of the CCP. They reside in memory while the CCP is active, and therefore can be
 executed without referencing a disk.

1-16

1.6 System Operation CP/M 3 Programmer's Guide

 The second command form the CCP accepts is the standard CP/M command line.
 A standard CP/M command line consists of a command keyword followed by an
 optional command tail. The command keyword and the command tall can be typed
 in any combination of upper-case and lower-case letters; the CCP converts all letters
 n the command line to upper-case. The following syntax defines the standard CP/M
 command line:

 <command> <command tail>
 where
 <command> = > <filespec> or
 <built-in>
 <command tail> = > (no command tail) or
 <filespec> or <filespec><delimiter><filespec>
 <filespec> = > {d:}filename{.typ}{;password}
 <built-in> = > one of the CCP built-in commands
 <delimiter> = > one or more blanks or a tab or one of the
 following:"=,[]<> "
 d: = > CP/M 3 drive specification,"A" through"P"
 filename = > 1 to 8 character filename
 typ = > 1 to 3 character filetype
 password = > 1 to 8 character password value
 Fields enclosed in curly brackets are optional. If there is no drive {d:} present in a file
 specification <filespec>, the default drive is assumed. If the type field {.typ} is omit-
 ted, a type field of all blanks is implied. Omitting the password field @;passwordl
 implies a password of all blanks. When a command line is entered at the console, it
 is terminated by a return or line-feed keystroke.
 Transient programs that run under CP/M 3 are not restricted to the above com-
 mand tail definition. However, the CCP only parses command tails in this format for
 transient programs. Transient programs that define their command tails differently
 must perform their own command tall parsing.

1-17

1.6 System Operation CP/M 3 Programmer's Guide

 The command field must identify either a built-in command, a transient program,
 or a submit file. For example, USER is the keyword that identifies the built-in com-
 mand that changes the current user number. The CP/M 3 CCP displays the user
 number in the system prompt when the user number is non-zero. The following
 example illustrates changing the user number from zero to 15.
 B>USER 15
 15B>
 The following table summarizes the built-in commands.
 Table 1-1. CP/M 3 Built-in Commands
 Command Meaning
 DIR displays a list of all filenames from a disk directory except those
 marked with the SYS attribute.
 DIRSYS displays a filename list of those files marked with the SYS
 attribute in the directory.
 ERASE erases a filename from a disk directory and releases the storage
 occupied by the file.
 RENAME renames a file.
 TYPE displays the contents of an ASCII character file at your console
 output device.
 USER changes from one user number to another.

 Some built-in commands have associated command files which expand upon the
 options provided by the built-in command. If the CCP reads a command line and
 discovers the built-in command does not support the options requested in the com-
 mand line,, the CCP loads the built-in function's corresponding command file to
 perform the command. The DIR command is an example of this type of command.
 Simple DIR commands are supported by the DIR built-in directly. More complex
 requests are handled by the DIR.COM utility.

1-18

1.6 System Operation CP/M 3 Programmer's Guide

 All command keywords that do not identify built-in commands identify either a
 transient program file or a submit file. If the CCP identifies a command keyword as
 a transient program, the transient program file is loaded into the TPA from disk and
 executed. If it recognizes a submit file, the CCP reconstructs the command line into
 the following form:
 SUBMIT <command> <command tail>
 and attempts to load and execute the SUBMIT utility. Thus, the original command
 fie'ld becomes the first command tail field of the SUBMIT command. Section 1.6.5
 describes the execution of CP/M 3's SUBMIT utility. The procedure the CCP follows
 o parse a standard command line and execute built-in and transient commands is
 described as follows:

 1. The CCP parses the command line to pick up the command field.
 2. If the command field is not preceded by a drive specification, or followed by
 a filetype or password field, the CCP checks to see if the command is a CCP
 built-in function. If the command is a built-in command, and the CCP can
 support the options specified in the command tail, the CCP executes the
 command. Otherwise, the CCP goes on to step 3.
 3. At this point the CCP assumes the command field references a command file
 or submit file on disk. If the optional filetype field is omitted from the com-
 mand, the CCP usually assumes the command field references a file of type
 COM. For example, if the command field is PIP, the CCP attempts to open
 the file PIP.COM.
 Optionally, the CP/M 3 utility SETDEF can specify that a filetype of SUB
 also be considered when the command filetype field is omitted. When this
 automatic submit option is in effect, the CCP attempts to open the command
 with a filetype of COM. If the COM file cannot be found, the CCP repeats
 the open op eration with a filetype of SUB. As an alternative, the order of
 open operations can be reversed so that the CCP attempts to open with a
 filetype of SUB first. In either case, the file that is found on disk first deter-
 mines the filetype field that is ultimately associated with the command.
 If the filetype field is present in the command, it must equal COM, SUB or
 PRL. A PRL file is a Page Relocatable file used in Digital Research's multi-
 user operating system, MP/M. Under CP/M 3, the CCP handles PRL files
 exactly like COM files.

1-19

1.6 System Operation CP/M 3 Programmer's Guide

 If the command field is preceded by a drive specification id:), the CCP attempts
 to open the command or submit file on the specified drive. Otherwise, the
 CCP attempts to open the file on the drives specified in the drive chain.
 The drive chain specifies up to four drives that are to be referenced in sequence
 for CCP open operations of command and submit files. If an open operation
 is unsuccessful on a drive in the drive chain because the file cannot be found,
 the CCP repeats the open operation on the next drive in the chain. This
 sequence of open operations is repeated until the file is found, or the drive
 chain is exhausted. The drive chain contains the current default drive as its
 only drive unless the user modifies the drive chain with the CP/M 3 SETDEF
 utility.
 When the current user number is non-zero, all open requests that fail because
 the file cannot be found, attempt to locate the command file under user zero.
 If the file exists under user zero with the system attribute set, the file is
 opened from user zero. This search for a file under user zero is made by the
 BDOS Open File function. Thus, the user zero open attempt is made before
 advancing to the next drive in the search chain.
 When automatic submit is in effect, the CCP attempts to open with the first
 filetype, SUB or COM, on all drives in the search chain before trying the
 second filetype.
 In the banked system, if a password specified in the command field does not
 match the password of a file on a disk protected in Read mode, the CCP file
 open operation is terminated with a password error.
 If the CCP does not find the command or submit file, it echoes the command
 line followed by a question mark to the console. If it finds a command file
 with a filetype of COM or PRL, the CCP proceeds to step 4. If it finds a
 submit file, it reconstructs the command line as described above, and repeats
 step 3 for the command, SUBMIT.COM.

1-20

1.6 System Operation CP/M 3 Programmer's Guide

 4. When the CCP successfully opens the command file, it initializes the follow-
 ing Page Zero fields for access by the loaded transient program:
 0050H Drive that the command file was loaded from
 0051H Password address of first file in command tail
 0053H Password length of first file in command tail
 0054H Password address of second file in command tail
 0056H Password length of second file in command tail
 005CH Parsed FCB for first file in command tail
 006CH Parsed FCB for second file in command tail
 0080H Command tail preceded by command tail length
 Page Zero initialization is covered in more detail in Section 2.4.
 5. At this point, the CCP calls the LOADER module to load the command file
 into the TPA. The LOADER module terminates the load operation if a read
 error occurs, or if the available TPA space is not large enough to contain the
 file. If no RSXs are resident in memory, the available TPA space is deter-
 mined by the address LOADER - base because the LOADER cannot load over
 itself. Otherwise, the maximum TPA address is determined by the base address
 of the lowest RSX in memory.
 6. Once the program is loaded, the LOADER module checks for a RSX header
 on the program. Programs with RSX headers are identified by a return
 instruction at location 100H.
 If an RSX header is present, the LOADER relocates all RSXs attached to the
 end of the program, to the top of the TPA region of memory under the
 LOADER module, or any other RSXs that are already resident. It also updates
 the address in location 0006H of Page Zero to address the lowest RSX in
 memory. Finally, the LOADER discards the RSX header and relocates the
 program file down one page in memory so that the first executable instruc-
 tion resides at 100H.
 7. After initializing Page Zero, the LOADER module sets up a 32-byte stack
 with the return address set to location OOOOH of Page Zero and jumps to
 location 100H. At this point, the loaded transient program begins execution.

1-21

1.6 System Operation CP/M 3 Programmer's Guide

 When a transient program terminates execution, the BIOS warm start routine
 reloads the CCP into memory. When the CCP receives control, it tests to see if RSXs
 are resident in memory. If not, it relocates the LOADER module below the BDOS
 module at the top of the TPA region of memory. Otherwise, it skips this step because
 the LOADER module is already resident. The CCP execution cycle then repeats.
 Unlike earlier versions of CP/M, the CCP does not reset the disk system at warm
 start. However, the CCP does reset the disk system if a CTRL-C is typed at the
 prompt.
 1.6.3 Transient Program Operation
 A transient program is one that the CCP loads into the TPA region of memory
 and executes. As the name transient implies, transient programs are not system resi-
 dent. The CCP must load a transient program into memory every time the program
 is to be executed. For example, the utilities PIP and RMAC" that are shipped with
 CP/M 3 execute as transient programs; programs such as word processing and
 accounting packages distributed by applications vendors also execute as transient
 programs under CP/M 3.
 Section 1.6.2 describes how the CCP prepared the CP/M 3 environment for the
 execution of a transient program. To summarize, the CCP initializes Page Zero to
 contain parsed command-line fields and sets up a 32-byte stack before jumping to
 location 0100H to pass control to the transient program. In addition, the CCP might
 also load RSXs attached to the command file into memory for access by the transient
 program.
 Generally, an executing transient program communicates with the operating sys-
 tem only through BDOS function calls. Transient programs make BDOS function
 calls by loading the CPU registers with the appropriate entry parameters and calling
 location 0005H in Page Zero.
 Transient programs can use BDOS Function 50, Call BIOS, to access BIOS entry
 points. This is the preferred method for accessing the BIOS; however, for compatibil-
 ity with earlier releases of CP/M, transient programs can also make direct BIOS calls
 for console and list I/O by using the jump instruction at location OOOOH in Page
 Zero. But, to simplify portability, use direct BIOS calls only where the primitive level
 of functionality provided by the BIOS functions is absolutely required. For example,
 a disk formatting program must bypass CP/M's disk organization to do its job, and
 therefore is justified in making direct BIOS calls. Note however, that disk formatting
 programs are rarely portable.

1-22

1.6 System Operation CP/M 3 Programmer's Guide

 A transient program can terminate execution in one of three ways: by jumping to
 location 0000H, by making a BDOS System Reset call, or by making a BDOS Chain
 To Program call. The first two methods are equivalent; they pass control to the BIOS
 warm start entry point, which then loads the CCP into the TPA, and the CCP
 prompts for the next command.
 The Chain to Program call allows a transient program to specify the next com-
 mand to be executed before it terminates its own execution. A Program Chain call
 executes a standard warm boot sequence, but passes the command specified by the
 terminating program to the CCP in such a way that the CCP executes the specified
 command instead of prompting the console for the next command.
 Transient programs can also set a Program Return Code before terminating by
 making a BDOS Function 108 call, Get/Set Program Return Code. The CCP initial-
 izes the Program Return Code to zero, successful, when it loads a transient program,
 unless the program is loaded as the result of a program chain. Therefore, a transient
 program that terminates successfully can use the Program Return Code to pass a
 value to a chained program. If the program terminates as the result of a BDOS fatal
 error, or a CTRL-C entered at the console, the BDOS sets the return code to an
 unsuccessful value. All other types of program termination leave the return code at
 its current value.
 The CCP has a conditional command facility that uses the Program Return Code.
 If a command line submitted to the CCP by the SUBMIT utility begins with a colon,
 the CCP skips execution of the command if the previous command set an unsuccess-
 ful Program Return Code. In the following example, the SUBMIT utility sends a
 command sequence to the CCP:
 A>SUBMIT SUBFILE
 A>COMPUTE RESULTS.DAT
 A >: REPORT RESULTS. DA T
 The CCP does not execute the REPORT command if the COMPUTE command ses
 an unsuccessful Program Return Code.
 1.6.4 Resident System Extension Operation
 This section gives a general overview of RSX use, then describes how RSXs are
 loaded, defines the RSX file structure, and tells how the LOADER module uses the
 RSX prefix and flags to manage RSX activity.

1-23

1.6 System Operation CP/M 3 Programmer's Guide

 A Resident System Extension (RSX) is a special type of program that can be
 attached to the operating system to modify or extend the functionality of the BDOS.
 RSX modules intercept BDOS functions and either perform them, translate them into
 other BDOS functions, or pass them through untouched. The BDOS executes non-
 intercepted functions in the standard manner.
 A transient program can also use BDOS Function 60, Call Resident System Exten-
 sion, to call an RSX for special functions. Function 60 is a general purpose function
 that allows customized interfaces between programs and RSXS.
 Two examples of RSX applications are the GET utility and the LOADER module.
 The GET.COM command file has an attached RSX, GET.RSX, which intercepts all
 console input calls and returns characters from the file specified in the GET command
 line. The LOADER module is another example of an RSX, but it is special because
 it supports Function 59, Load Overlay. It is always resident in memory when other
 RSXs are active.
 RSXs are loaded into memory at program load time. As described in Section 1.6.2,
 after the CCP locates a command file, it calls the LOADER module to load the
 program into the TPA. The LOADER loads the transient program into memory
 along with any attached RSXS. Subsequently, the loader relocates each attached RSX
 to the top of the TPA and adjusts the TPA size by changing the jump at location
 0005H in Page Zero to point to the RSX. When RSX modules reside in memory, the
 LOADER module resides directly below the BDOS, and the RSX modules stack
 downward from it.
 The order in which the RSX modules are stacked affects the order in which they
 intercept BDOS calls. A more recently stacked RSX has precedence over an older
 RSX. Thus,, if two RSXs in memory intercept the same BDOS function, the more
 recently loaded RSX handles the function.
 The CP/M 3 utility GENCOM attaches RSX modules to program files. Program
 files with attached RSXs have a special one page header that the LOADER recognizes
 when it loads the command file. GENCOM can also attach one or more RSXs to a
 null command file so that the CCP can load RSXs without having to execute a
 transient program. In this case, the command file consists of the RSX header fol-
 lowed by the RSXS.
 RSX modules are Page Relocatable, PRL, files with the file type RSX. RSX files
 must be page relocatable because their execution address is determined dynamically
 by the LOADER module at load time. RSX files have the following format:

1-24

1.6 System Operation CP/M 3 Programmer's Guide

 Figure 1-8. RSX File Format
 RSX files begin with a one page PRL header that specifies the total size of the RSX
 prefix and code sections. The PRL bit map is a string of bits identifying those bytes
 in the RSX prefix and code sections that require relocation. The PRL format is
 described in detail in Appendix B. Note that the PRL header and bit map are removed
 when an RSX is loaded into memory. They are only used by the LOADER module
 to load the RSX.
 The RSX prefix is a standard data structure that the LOADER module uses to
 manage RSXs (see Section 4.4). Included in this data structure are jump instructions
 to the previous and next RSX in memory, and two flags. The LOADER module
 initializes and updates these 'ump instructions to maintain the link from location 6
 of Page Zero to the BDOS entry point. The RSX flags are the Remove flag and the
 Nonbanked flag. The Remove flag controls RSX removal from memory. The CCP
 tests this flag to determine whether or not it should remove the RSX from memory
 at system warm start. The nonbanked flag identifies RSXs that are loaded only in
 nonbanked CP/M 3 systems. For example, the CP/M 3 RSX, DIRLBL.RSX, is a
 nonbanked RSX. It provides BDOS Function 100, Set Directory Label, support for
 nonbanked systems only. Banked systems support this function in the BDOS.
 The RSX code section contains the main body of the RSX. This section always
 begins with code to intercept the BDOS function that is supported by the RSX.
 Nonintercepted functions are passed to the next RSX in memory. This section can
 also include initialization and termination code that transient programs can call with
 BDOS Function 60.

1-25

1.6 System Operation CP/M 3 Programmer's Guide

 When the CCP gains control after a system warm start, it removes any RSXs in
 memory that have the Remove flag set to OFFH. All other RSXs remain active in
 memory. Setting an RSX's Remove flag to OFFH indicates that the RSX is not active
 and it can be removed. Note that if an RSX marked for removal is not the lowest active
 RSX in memory, it still occupies memory after removal. Although the removed RSX
 cannot be executed, its space is returned to the TPA only when all the lower RSXs are
 removed.
 There 'is one special case where the CCP does not remove an RSX with the Remove
 flag set to OFFH following warm start. This case occurs on warm starts following the
 load of an empty file with attached RSXS. This exception allows an RSX with the
 Remove flag set to be loaded into i-nemory before a transient program. The transient
 program can then access the RSX during execution. After the transient program
 terminates, however, the CCP removes the RSX from the system environment.
 As an example of RSX operation, here is a description of the operation of the GET
 utility. The GET.COM command file has an attached RSX. The LOADER moves
 this RSX to the top of the TPA when it loads the GET.COM command file. The
 GET utility performs necessary initializations which include opening the ASCII file
 specified in the GET command line. It also makes a BDOS Function 60 call to
 initialize the GET.RSX. At this point, the GET utility terminates. Subsequently, the
 GET.RSX intercepts all console input calls and returns characters from the file speci-
 fied in the GET command line. It continues this action until it reads end-of-file. At
 this point, it sets its Remove flag in the RSX prefix, and stops intercepting console
 input. On the following warm boot, the CCP removes the RSX from memory.
 1.6.5 SUBMIT Operation
 A SUBMIT command line has the following syntax:
 SUBMIT <filespec> <parameters>
 If the CCP identifies a command as a submit file, it automatically inserts the SUBMIT
 keyword into the command line as described in Section 1.6.2.

1-26

1.6 System Operation CP/M 3 Programmer's Guide

 When the SUBMIT utility begins execution, it opens and reads the file specified by
 <filespec> and creates a temporary submit file of type $$$ on the system's tempo-
 rary file drive. GENCPM initializes the temporary file drive to the CCP's current
 default drive. The SETDEF utility can set the temporary file drive to a specific drive.
 As it creates the temporary file, SUBMIT performs the parameter substitutions requested
 by the <parameters> subfield of the SUBMIT command line. See the CP/M Plus
 (CP/M Version 3) Operating System User's Guide for a detailed description of this
 process.
 After SUBMIT creates the temporary submit file, its operation is similar to that of
 the GET utility described in Section 1.6.4. The SUBMIT command file also has an
 attached RSX that performs console input redirection from a file. However, the
 SUBMIT RSX expands upon the simpler facilities provided by the GET RSX. Com-
 mand lines in a submit file can be marked to indicate whether they are program or
 CCP input. Furthermore, if a program exhausts all its program input, the next SUB-
 MIT command is a CCP command, the SUBMIT RSX temporarily reverts to console
 input. Redirected input from the submit file resumes when the program terminates.
 Because CP/M 3's submit facility is implemented with RSXS, submit files can be
 nested. That is) a submit file can contain additional SUBMIT or GET commands.
 Similarly, a GET command can specify a file that contains GET or SUBMIT com-
 mands. For example, when a SUBMIT command is encountered in a submit file, a
 new SUBMIT RSX is created below the current RSX. The new RSX handles console
 input until it reads end-of-file on its temporary submit file. At this point, control
 reverts to the previous SUBMIT RSX.
 1.7 System Control Block
 The System Control Block, SCB, is a 100 byte CP/M 3 data structure that resides
 in the BDOS system component. The SCB contains internal BDOS flags and data,
 CCP flags and data, and other system information such as console characteristics and
 the current date and time. The BDOS, BIOS, CCP system components as well as
 CP/M 3 utilities and RSXs reference SCB fields. BDOS Function 49, Get/Set System
 Control Block, provides access to the SCB fields for transient programs, RSXS, and
 the CCP.

1-27

1.6 System Operation CP/M 3 Programmer's Guide

 However, use caution when you access the SCB through Function 49 for two
 reasons. First, the SCB is a CP/M 3 data structure. Digital Research's multi-user
 operating system, MP/M, does not support BDOS Function 49. Programs that access
 the SCB can run only on CP/M 3. Secondly, the SCB contains critical system param-
 eters that reflect the current state of the operating system. If a program modifies these
 parameters illegally, the operating system might crash. However, for application writ-
 ers who are writing system-oriented applications, access to the SCB variables might
 prove valuable.
 For example, the CCP default drive and current user number are maintained in the
 System Control Block. This information is displayed in the system prompt. If a
 transient program changes the current disk or user number by making an explicit
 BDOS call, the System Control Block values are not changed. They continue to reflect
 the state of the system when the transient program was loaded. For compatibility
 with CP/M Version 2, the current disk and user number are also maintained in
 location 0004H of Page Zero. The high-order nibble contains the user number, and
 the low-order nibble contains the drive.
 Refer to the description of BDOS Function 49 in Section 2.5 for more information
 on the System Control Block. The SCB fields are also discussed in Appendix A.

End of Section 1

1-28

1.7 System Control Block CP/M 3 Programmer's Guide

Section 2

The BDOS System Interface

 This section describes the operating system services available to a transient pro-
 gram through the BDOS module of CP/M 3. The section begins by defining how a
 transient program calls BDOS functions, then discusses serial I/O for console, list and
 auxiliary devices, the file system, and Page Zero initialization.
 2.1 BDOS Calling Conventions
 CP/M 3 uses a standard convention for BDOS function calls. On entry to the
 BDOS, register C contains the BDOS function number, and register pair DE contains
 a byte or word value or an information address. BDOS functions return single-byte
 values in register A, and double-byte values in register pair HL. In addition, they
 return with register A equal to L, and register H equal to B. If a transient program
 makes a BDOS call to a nonsupported function number in the range of 0 to 127, the
 BDOS returns with register pair HL set to OFFFFH. For compatibility with MP/M,
 the BDOS returns with register pair HL set to OOOOH on nonsupported function
 numbers in the range of 128 to 255. Note that CP/M 2 returns with HL set to zero
 on all invalid function calls. CP/M 3's register passing conventions for BDOS func-
 tion calls are consistent with the conventions used by the Intel PL/M systems pro-
 gramming language.
 When a transient program makes a BDOS function call, the BDOS does not restore
 registers to their entry values before returning to the calling program. The responsi-
 bility for saving and restoring any critical re 'ster values rests with the calling program.
 When the CCP loads a transient program, the LOADER module sets the stack
 pointer to a 16 level stack, and then pushes the address OOOOH onto the stack. Thus,
 an immediate return to the system is equivalent to a jump to OOOOH. However, most
 transient programs set up their own stack, and terminate execution by making a
 BDOS System Reset call (Function 0) or by jumping to location OOOOH.

2-1

 The following example illustrates how a transient program calls a BDOS function.
 This program reads characters continuously until it encounters an asterisk. Then it
 termmates execution by returning to the system.

 bdos equ 0005h ;BDOS entry Point in Page Zero
 conin equ 1 ;BDOS console input function
 ;
 org 100h ;Base of Transient Program Area
 nextc: mvii c,conin
 call bdos ;Return character in A
 cpi '*' ;End of Processing?
 jnz nextc ;Loop if not
 ret ;Terminate Program
 end
 2.2 BDOS Serial Device I/O
 Under CP/M 3, serial device I/O is simply input to and output from simple devices
 such as consoles, line printers, and communications devices. These physical devices
 can be assigned the logical device names defined below:
 CONIN: logical console input device
 CONOUT: logical console output device
 AUXIN: logical auxiliary input device
 AUXOUT: logical auxiliary output device
 LST: logical list output device
 If your system supports the BIOS DEVTBL function, the CP/M 3 DEVICE utility
 can display and change the assignment of logical devices to physical devices. DEVICE
 can also display the names and attributes of physical devices supported on your
 system. If your system does not support the DEVTBL entry point, then the logical to
 physical device assignments are fixed by the BIOS.
 In general, BDOS serial I/O functions read and write an individual ASCII charac-
 ter, or character string to and from these devices, or test the device's ready status.
 For these BDOS functions, a string of characters is defined as zero to N characters
 terminated by a delimiter. A block of characters is defined as zero to N characters
 where N is specified by a word count field. The maximum value of N in both cases
 is limited only by available memory. The following list summarizes BDOS serial
 device I/O functions.

2-2

 2.1 BDOS Calling Conventions CP/M 3 Programmer's Guide

 Read a character from CONIN:
 Read a character buffer from CONIN:
 Write a character to CONOUT:
 Write a string of characters to CONOUT:
 Write a block of characters to CONOUT:
 Read a character from AUXIN:
 Write a character to AUXOUT:
 Write a character to LST:
 Write a block of characters to LST:
 Interrogate CONIN:, AUXIN:, AUXOUT: ready
 CP/M 3 cannot run unless CONIN: and CONOUT: are assigned to a physical
 console. The remaining logical devices can remain unassigned. If a logical output
 device is not assigned to a physical device, an output BDOS call to the logical device
 performs no action. If a logical input device is not assigned to a physical device, an
 input BDOS call to the logical device typically returns a CTRL-Z (lAH), which
 indicates end-of-file. Note that these actions depend on your system's BIOS
 implementation.
 2.2.1 BDOS Console I/O
 Because a transient program's main interaction with its user is through the console,
 the BDOS supports many console I/O functions. Console PO functions can be divided
 into four categories: basic console I/O, direct console I/O, buffered console input,
 and special console functions. Using the basic console I/O functions, programs can
 access the console device for simple input and output. The basic console I/O func-
 tions are:
 1. Console Input - Inputs a single character
 2. Console Output - Outputs a single character
 9. Print String - Outputs a string of characters
 11. Console Status - Signals if a character is ready for input
 111. Print Block - Outputs a block of characters
 The input function echoes the character to the console so that the user can identify
 the typed character. The output functions expand tabs in columns of eight characters,

2-3

2.2 BDOS Serial Device I/O CP/M 3 Programmer's Guide

 The basic I/O functions also monitor the console to stop and start console output
 scroll at the user's request. To provide this support, the console output functions
 make internal status checks for an input character before writing a character to the
 output device. The console input and console status functions also check the input
 character. If the user types a CTRL-S, these functions make an additional Blos
 console input call. This input call suspends execution until a character is typed. If the
 typed character is not a CTRL-Q, an additional BIOS console input call is made.
 Execution and console scrolling resume when the user types a CTRL-Q.
 When the BDOS is suspended because of a typed CTRL-S, it scans input for three
 special characters: CTRL-Q, CTRL-C, and CTRL-P. If the user types any other
 character, the BDOS echoes a bell character, CTRL-G, to the console, discards the
 input character, and continues the scan. If the user types a CTRL-C, the BDOS
 executes a warm start which terminates the calling program. If the user types a
 CTRL-P, the BDOS toggles the printer echo switch. The printer echo switch controls
 whether console output is automatically echoed to the list device, LST:. The BDOS
 signals when it turns on printer echo by sending a bell character to the console.
 All basic console I/O functions discard any CTRL-Q or CTRL-P character that is
 not preceded by a CTRL-S character. Thus, BDOS function 1 cannot read a CTRL-
 S, CTRL-Q, or CTRL-P character. Furthermore, these characters are invisible to the
 console status function.
 The second category of console I/O is direct console I/O. BDOS function 6 can
 proveide direct console I/O in situations where unadorned console I/O is required.
 Function 6 actually consists of several sub-functions that support direct console input,
 output, and status checks. The BDOS does not filter out special characters during
 direct console I/O. The direct output sub-function does not expand tabs, and the
 direct input sub-function does not echo typed characters to the console.
 The third category of console I/O accepts edited input from the console. The only
 function in this category, Function 10, Read Buffer Input, reads an input line from a
 buffer and recognizes certain control characters that edit the input. As an option, the
 line to be edited can be initialized by the calling program.
 In the nonbanked version of CP/M 3, editing within the buffer is restricted to the
 last character on the line. That. is, to edit a character embedded in the line, the user
 must delete all characters that follow the erroneous character, correct the error, and
 then retype the remainder of the line. The banked version of CP/M 3 supports
 complete line editing in which characters can be deleted and inserted anywhere in the
 line. In addition', the banked version can also recall the previously entered line.

2-4

2.2 BDOS Serial Device I/O CP/M 3 Programmer's Guide

 Function 10 also filters input for certain control characters. If the user types a
 CTRL-C as the first character in the line, Function 10 terminates the calling program
 by branching to the BIOS warm start entry point. A CTRL-C in any other position
 is simply echoed at the console. Function 10 also watches for a CTRL-P keystroke,
 and if it finds one at any position in the command line, it toggles the printer echo
 switch. Function 10 does not filter CTRL-S and CTRL-Q characters, but accepts
 them as normal input. In general, all control characters that Function 10 does not
 recognize as editing control characters, it accepts as input characters. Function 10
 identifies a control character with a leading caret, ', when it echoes the control
 character to the console. Thus, CTRL-C appears as 'C in a Function 10 command
 line on the screen.
 The final category of console I/O functions includes special functions that modify
 the behavior of other console functions. These functions are:
 109. Get/Set Console Mode
 110. Get/Set Output Delimiter
 Function 110 can get or set the current delimiter for Function 9, Print String. The
 delimiter is $, when a transient program begins execution. Function 109 gets or sets
 a 16-bit system variable called the Console Mode. The following list describes the
 bits of the Console Mode variable and their functions:
 bit 0 If this bit is set, Function 11 returns true only if a CTRL-C is typed at the
 console. Programs that make repeated console status calls to test if execution
 should be interrupted, can set this bit to interrupt on CTRL-C only. The
 CCP DIR and TYPE built-in commands run in this mode.
 bit 1 Setting this bit disables stop and start scroll support for the basic console
 110 functions, which comprise the first category of functions described in
 this section. When this bit is set, Function 1 reads CTRL-S, CTRL-Q, and
 CTRL-P, and Function 1 1 returns true if the user types these characters. Use
 this mode in situations where raw console input and edited output is needed.
 While in this mode, you can use Function 6 for input and input status, and
 Functions 1, 9, and 111 for output without the possibility of the output
 functions intercepting input CTRL-S, CTRL-Q, or CTRL-P characters.
 bit 2 : Setting this bit disables tab expansion and printer echo support for Functions
 2, 9, and 111. Use this mode when non-edited output is required.

2-5

2.2 BDOS Serial Device I/O CP/M 3 Programmer's Guide

 bit 3 : This bit disables all CTRL-C intercept action in the BDOS. This mode is
 useful for programs that must control their own termination.
 bits 8 and 9 : The BDOS does not use these bits, but reserves them for the CP/M 3
 GET RSX that performs console input redirection from a file. With one
 exception, these bits determine how the GET RSX responds to a program
 console status request (Function 6, Function 11, or direct BIOS).
 bit 8 = 0, bit 9 = 0 - conditional status
 bit 8 = 0, bit 9 = 1 - false status
 bit 8 = 1, bit 9 = 0 - true status
 bit 8 = 1, bit 9 = 1 - do not perform redirection
 In conditional status mode, GET responds false to all status requests except for a
 status call preceded immediately by another status call. On the second call, GET
 responds with a true result. Thus, a program that spins on status to wait for a
 character is signaled that a character is ready on the second call. In addition, a
 program that makes status calls periodically to see if the user wants to stop is not
 signaled.
 When a transient program begins execution, the Console Mode bits are normally
 set to zero. However,, the CP/M 3 utility GENCOM can attach an RSX header to a
 COM file so that when it is loaded, the console mode bits are set differently. This
 feature allows you to modify a program's console I/O behavior without having to
 change the program.
 2.2.2 Other Serial I/O
 The BDOS supports single character output functions for the logical devices LST:
 and AUXOUT:, an input function for AUXIN:, and status functions for AUXIN:
 and AUXOUT:. A block output function is also supported for the LST: device.
 Unlike the console I/O functions, the BDOS does not intercept control characters or
 expand tabs for these functions. Note that AUXIN: and AUXOUT: replace the
 READER and PUNCH devices supported by earlier versions of CP/M.

2-6Pb

2.2 BDOS Serial Device I/O CP/M 3 Programmer's Guide

 2.3 BDOS File System
 Transient programs depend on the BDOS file system to create, update, and main-
 tain disk files. This section describes the capabilities of the BDOS file system in detail.
 You must understand the general features of CP/M 3 described in Section 1 before
 you can use the detail presented in this section.
 The remaining introductory paragraphs define the four categories of BDOS file
 functions. This is followed by a review of file naming conventions and disk and file
 organization. The section then describes the data structure used by the BDOS file,
 and directory oriented functions: the File Control Block (FCB). Subsequent discus-
 sions cover file attributes, user numbers, directory labels and extended File Control
 Blocks (XFCBs), passwords, date and time stamping, blocking and deblocking, multi-
 sector I/O, disk reset and removable media, byte counts, and error handling. These
 topics are closely related to the BDOS file system. You must be familiar with the
 contents of Section 2 before attempting to use the BDOS functions described individ-
 ually in Section 3.
 The BDOS file system supports four categories of functions: file access functions,
 directory functions, drive related functions, and miscellaneous functions. The file
 access category includes functions to create a file, open an existing file, and close a
 file. Both the make and open functions activate the file for subsequent access by
 BDOS file access functions. The BDOS read and write functions are file access func-
 tions that operate either sequentially or randomly by record position. They transfer
 data in units of 128 bytes, which is the basic record size of the file system. The close
 function makes any necessary updates to the directory to permanently record the
 status of an activated file.

2-7

2.3 BDOS File System CP/M 3 Programmer's Guide

 BDOS directory functions operate on existing file entries in a drive's directory.
 This category includes functions to search for one or more files, delete one or more
 files, truncate a file, rename a file, set file attributes, assign a password to a file, and
 compute the size of a file. The search and delete functions are the only BDOS func-
 tions that support ambiguous file references. All other directory and fi e related func-
 tions require a specific file reference.
 The BDOS drive-related category includes functions that select the default drive,
 compute a drive's free space, interrogate drive status, and assign a directory label to
 a drive. A drive's directory label controls whether or not CP/M 3 enforces file pass-
 word protection, or stamps files with the date and time. Note that the nonbanked
 version of CP/M 3 does not support file passwords.
 The miscellaneous category includes functions to set the current DMA address,
 access and update the current user number, chain to a new program, and flush
 internal blocking/deblocking buffers. Also included are functions that set the BDOS
 multi-sector count, and the BDOS error mode. The BDOS multi-sector count deter-
 mines the number of 128-byte records to be processed by BDOS read and write
 functions. It can range from 1 to 128. The BDOS error mode determines how the
 BDOS file system handles certain classes of errors.
 Also included in the miscellaneous category are functions that call the BIOS directly,
 set a program return code, and parse filenames. If the LOADER RSX is resident in
 memory, programs can also make a BDOS function call to load an overlay. Another
 miscellaneous function accesses system variables in the System Control Block.

2-8Pb

2.3 BDOS File System CP/M 3 Programmer's Guide

 The following list summarizes the operations performed by the BDOS file system-
 Disk System Reset
 Drive Selection
 File Creation
 File Open
 File Close
 Directory Search
 File Delete
 File Rename
 Random or Sequential Read
 Random or Sequential Write
 Interrogate Selected Disks
 Set DMA Address
 Set/Reset File Attributes
 Reset Drive
 Set BDOS Multi-Sector Count
 Set BDOS Error Mode
 Get Disk Free Space
 Chain to Program
 Flush Buffers
 Get/Set System Control Block
 Call BIOS
 Load Overlay
 Call RSX
 Truncate File
 Set Directory Label
 Get File's Date Stamps and Password Mode
 Write File XFCB
 Set/Get Date and Time
 Set Default Password
 Return CP/M 3 Serial Number
 Get/Set Program Return Code
 Parse Filename
 2.3.1 File Naming Conventions
 Under CP/M 3, a file specification consists of four parts: the drive specifier, the
 filename field, the filetype field, and the file password field. The general format for a
 command line file specification is shown below:
 {d:}filename{.typ}{;password}

2-9

2.3 BDOS File System CP/M 3 Programmer's Guide

 The drive specifier field specifies the drive where the file is located. The filename and
 type fields identify the file. The password field specifies the password if a file is
 password protected.
 -ne drive, type, and password fields are optional, and the delimiters :.; are required
 only when specifying their associated field. The drive specifier can be assigned a letter
 from A to P where the actual drive letters supported on a given system are deter-
 mined by the BIOS implementation. When the drive letter is not specified, the current
 default drive is assumed.
 The filename and password fields can contain one to eight non-delimiter charac-
 ters. The filetype field can contain one to three non-delimiter characters. All three
 fields are padded with blanks, if necessary. Omitting the optional type or password
 fields implies a field specification of all blanks.
 The CCP calls BDOS Function 152, Parse Filename, to parse file specifications
 from a command line. Function 152 recognizes certain ASCII characters as valid
 delimiters when it parses a file from a command line. The valid delimiters are shown
 in Table 2-1.

 Table 2-1. Valid Filenamc Delimiters
 ASCII HEX EQUIVALENT
 null 00
 space 20
 return 0D
 tab 09
 : 3A
 . 2E
 ; 3B
 = 3D
 , 2C
 [5B
] 5D
 < 3C
 > 3E
 | 7C

2-10

2.3 BDOS File System CP/M 3 Programmer's Guide

 Function 152 also excludes all control characters from the file fields, and translates all
 lower-case letters to upper-case.
 Avoid using parentheses and the backslash character, \, in the filename and filetype
 fields because they are commonly used delimiters. Use asterisk and question mark
 characters, * and ?, only to make an ambiguous file reference. When Function 152
 encounters an * in a filename or filetype field, it pads the remainder of the field with
 question marks. For example, a filename of X*.* is parsed to X???????.???. The
 BDOS search and delete functions treat a ? in the filename and type fields as follows:
 A ? in any position matches the corresponding field of any directory entry belonging
 to the current user number. Thus, a search operation for X???????.??? finds all the
 current user files on the directory beginning in X. Most other file related BDOS
 functions treat the presence of a ? in the filename or type field as an error.
 It is not mandatory to follow the file naming conventions of CP/M 3 when you
 create or rename a file with BDOS functions. However, the conventions must be used
 if the file is to be accessed from a command line. For example, the CCP cannot locate
 a command file in the directory if its filename or type field contains a lower-case
 letter.
 As a general rule, the filetype field names the generic category of a particular file,
 while the filename distinguishes individual files in each category. Although they are
 generally arbitrary, the following list of filetypes names some of the generic categories
 that have been established.
 ASM Assembler Source PLI PL/I Source File
 PRN Printer Listing REL Relocatable Module
 HEX Hex Machine Code TEX TEX Formatter Source
 BAS Basic Source File BAK ED Source Backup
 INT Intermediate File SYM SID Symbol File
 COM Command File $$$ Temporary File
 PRL Page Relocatable DAT Data File
 SPR Sys. Page Reloc. SYS System File
 2.3.2 Disk and File Organization
 The BDOS file system can support from one to sixteen logical drives. The maxi-
 mum file size supported on a drive is 32 megabytes. The maximum capacity of a
 drive is determined by the data block size specified for the drive in the BIOS. The
 data block size is the basic unit in which the BDOS allocates disk space to files.

2-11

2.3 BDOS File System CP/M 3 Programmer's Guide

 Table 2-2 displays the relationship between data block size and drive capacity.
 Table 2-2. Logical Drive Capacity
 Data Block Size Maximum Drive Capacity
 1K 256 Kilobytes
 2K 64 Megabytes
 4K 128 Megabytes
 8K 256 Megabytes
 16K 512 Megabytes
 Logical drives are divided into two regions: a directory area and a data area. The
 directory area contains from one to sixteen blocks located at the beginning of the
 drive. The actual number is set in the BIOS. This area contains entries that define
 which files exist on the drive. The directory entries corresponding to a particular file
 define those data blocks in the drive's data area that belong to the file. These data
 blocks contain the file's records. The directory area is logically subdivided into six-
 teen independent directories identified as user 0 through 15. Each independent direc-
 tory shares the actual directory area on the drive. However, a file's directory entries
 cannot exist under more than one user number. In general, only files belonging to
 the current user number are visible in the directory.
 Each disk file consists of a set of up to 262,144 128-byte records. Each record in
 a file is identified by its position in the file. This position is called the record's random
 record number. If a file is created sequentially, the first record has a position of zero,
 while the last record has a position one less than the number of records in the file.
 Such a file can be read sequentially in record position order beginning at record zero,
 or randomly by record position. Conversely, if a file is created randomly, records are
 added to the file by specified position. A file created in this way is called sparse if
 positions exist within the file where a record has not been written.
 The BDOS automatically allocates data blocks to a file to contain its records on
 the basis of the record positions consumed. Thus, a sparse file that contains two
 records, one at position zero, the other at position 262,143, consumes only two data
 blocks in the data area. Sparse files can only be created and accessed randomly, not
 sequentially. Note that any data block allocated to a file is permanently allocated to
 the file until the file is deleted or truncated. These are the only mechanisms supported
 by the BDOS for releasing data blocks belonging to a file.

2-12

2.3 BDOS File System CP/M 3 Programmer's Guide

 Source files under CP/M 3 are treated as a sequence of ASCII characters, where
 each line of the source file is followed by a carriage return line-feed sequence, ODH
 followed by OAH. Thus a single 128-byte record could contain several lines of source
 text. The end of an ASCII file is denoted by a CTRL-Z character, 1AH, or a real end
 of file, returned by the BDOS read operation. CTRL-Z characters embedded within
 machine code files such as COM files are ignored. The actual end-of-file condition
 returned by the BDOS is used to terminate read operations.
 2.3.3 File Control Block Definition
 The File Control Block, FCB, is a data structure that is set up and initialized by a
 transient program, and then used by any BDOS file access and directory functions
 called by the transient program. Thus the FCB is an important channel for informa-
 tion exchange between the BDOS and a transient program. For example, when a
 program opens a file, and subsequently accesses it with BDOS read and write record
 functions, the BDOS file system maintains the current file state and position within
 the program's FCB. Some BDOS functions use certain fields in the FCB for invoking
 special options. Other BDOS functions use the FCB to return data to the calling
 program. In addition, all BDOS random I/O functions specify the random record
 number with a 3-byte field at the end of the FCB.
 When a transient program makes a file access or directory BDOS function call,
 register pair DE must address an FCB. The length of the FCB data area depends on
 the BDOS function. For most functions, the required length is 33 bytes. For random
 I/O functions, the Truncate File function, and the Compute File Size function, the
 FCB length must be 36 bytes. The FCB format is shown on the next page.

2-13

2.3 BDOS File System CP/M 3 Programmer's Guide

 where
 dr drive code (O - 16)
 0 = > use default drive for file
 1 = > auto disk select drive A,
 2 = > auto disk select drive B,
 16 = > auto disk select drive P.
 fl ... f8 contain the filename in ASCII
 upper-case, with high bit = 0.
 f1'..., f8' denote the high-
 order bit of these positions,
 and are file attribute bits.
 tl,t2,t3 contain the filetype in ASCII
 upper-case, with high bit = 0.
 tl') t2'1 and t3' denote the
 high bit of these positions,
 and are file attribute bits.
 tl' = 1 = > Read/Only file
 t2' = 1 = > System file
 t3' = 1 = > File has been archived
 ex contains the current extent number,
 usually set to 0 by the calling program,
 but can range 0 - 31 during file I/O
 sl reserved for internal system use
 s2 reserved for internal system use
 rc record count for extent "ex"
 takes on values from 0 - 255
 (values greater than 128 imply
 record count equals 128)

2-14

2.3 BDOS File System CP/M 3 Programmer's Guide

 d0 ... dn filled-in by CP/M 3, reserved for
 system use
 cr current record to read or write in
 a sequential file operation, normally
 set to zero by the calling program
 when a file is opened or created
 r0,,rl,r2 optional random record number in the
 range 0-262,143 (O - 3FFFFH).
 r0,rl,r2 constitute a 18 bit value
 with low byte rO, middle byte rl, and
 high byte r2.
 For BDOS directory functions, the calling program must initialize bytes 0 through
 11 of the FCB before issuing the function call. The Set Directory Label and Write
 File XFCB functions also require the calling program to initialize byte 12. The Rename
 File function requires the calling program to place the new filename and type in bytes
 17 through 27.
 BDOS open or make function calls require the calling program to intialize bytes 0
 through 12 of the FCB before making the call. Usually, byte 12 is set to zero. In
 if the file is to be processed from the beginning using sequential read or
 addition, 1
 write functions, byte 32, cr, must be zeroed.
 After an FCB is activated by an open or make operation, a program does not have
 to modify the FCB to perform sequential read or write operations. In fact, bytes 0
 through 31 of an activated FCB should not be modified. However, random I/O
 functions require that a program set bytes 33 through 35 to the requested random
 record number prior to making the function call.
 File directory entries maintained in the directory area of each disk have the same
 format as FCBS, excluding bytes 32 through 35, except for byte 0 which contains the
 file's user number. Both the Open File and Make File functions bring these entries,
 excluding byte 0, into memory in the FCB specified by the calling program. All read
 and write operations on a file must specify an FCB activated in this manner.

2-15

2.3 BDOS File System CP/M 3 Programmer's Guide

 The BDOS updates the memory copy of the FCB during file processing to maintain
 the current position within the file. During file write operations, the BDOS updates
 the memory copy of the FCB to record the allocation of data to the file, and at the
 termination of file processing, the Close File function permanently records this infor-
 mation on disk. Note that data allocated to a file during file write operations is not
 completely recorded in the directory until the calling program issues a Close File call.
 Therefore,, a program that creates or modifies files must close the files at the end of
 any write processing. Otherwise, data might be lost.
 The BDOS Search and Delete functions support multiple or ambiguous file refer-
 ences. In general, a question mark in the filename, filetype, or extent field matches
 any value in the corresponding positions of directory FCBs during a directory search
 operation. The BDOS search functions also recognize a question mark in the drive
 code field, and if specified, they return all directory entries on the disk regardless of
 user number, including empty entries. A directory FCB that begins with E5H is an
 empty directory entry.
 2.3.4 File Attributes
 The high-order bits of the FCB filename, fl',...,f8', and filetype, tl',t2',t3', fields
 are called attribute bits. Attributes bits are 1 bit Boolean fields where 1 indicates on
 or true, and 0 indicates off or false. Attribute bits indicate two kinds of attributes
 within the file system: file attributes and interface attributes.
 The file attribute bits, fl f4' and tl',t2',t3', can indicate that a file has a defined
 file attribute. These bits are recorded in a file's directory FCBS. File attributes can be
 set or reset only by the BDOS Set File Attributes function. When the BDOS Make
 File function creates a file, it initializes all file attributes to zero. A program can
 interrogate file attributes in an FCB activated by the BDOS Open File function, or in
 directory FCBs returned by the BDOS Search For First and Search For Next functions.
 Note: the BDOS file system ignores file attribute bits when it attempts to locate a file
 in the directory.
 The file system defines the file attribute bits, tl',t2',t3', as follows:
 tl': Read-Only attribute - The file system prevents write operations to a file with
 the read-only attribute set.

2-16

2.3 BDOS File System CP/M 3 Programmer's Guide

 t2': System attribute - This attribute, if set, identifies the file as a CP/M 3 system
 file. System files are not usually displayed by the CP/M 3 DIR command. In
 addition, user-zero system files can be accessed on a read-only basis from other
 user numbers.
 t3': Archive attribute - This attribute is designed for user written archive programs.
 When an archive program copies a file to backup storage, it sets the archive
 attribute of the copied files. The file system automatically resets the archive
 attribute of a directory FCB that has been issued a write command. The archive
 program can test this attribute in each of the file's directory FCBs via the BDOS
 Search and Search Next functions. If all directory FCBs have the archive attri-
 bute set, it indicates that the file has not been modified since the previous
 archives Note that the CP/M 3 PIP utility supports file archival.
 Attributes fl' through f4' are available for definition by the user.
 The interface attributes are indicated by bits f5' through f8' and cannot be used as
 file attributes. Interface attributes f5' and f6' can request options for BDOS Make
 File, Close File, Delete File, and Set File Attributes functions. Table 2-3 defines options
 indicated by the f5' and f6' interface attribute bits for these functions.
 Table 2-3. BDOS Interface Attributes
 BDOS Function Interface Attribute Definition
 16. Close File f5' 1 Partial Close
 19. Delete File f5' 1 Delete file XFCBs
 only
 22. Make File f6' = 1 Assign password to
 file
 30. Set File Attributes f6' = 1 Set file byte count

 Section 3 discusses each interface attribute in detail in the definitions of the above
 functions. Attributes f5' and f6' are always reset when control is returned to the
 calling program. Interface attributes f7' and f8' are reserved for internal use by the
 BDOS file system.

2-17

2.3 BDOS File System CP/M 3 Programmer's Guide

 2.3.5 User Number Conventions
 The CP/M 3 User facility divides each drive directory into sixteen logically inde-
 pendent directories, designated as user 0 through user 15. Physically, all user direc-
 tories share the directory area of a drive. In most other aspects, however, they are
 independent. For example, files with the same name can exist on different user num-
 bers of the same drive with no conflict. However, a single file cannot reside under
 more than one user number.
 Only one user number is active for a program at one time, and the current user
 number applies to all drives on the system. Furthermore, the FCB format does not
 contain any field that can be used to override the current user number. As a result,
 all file and directory operations reference directories associated with the current user
 number. However, it is possible for a program to access files on different user num-
 bers; this can be accomplished by setting the user number to the file's user number
 with the BDOS Set User function before making the desired BDOS function call for
 the file. Note that this technique must be used carefully. An error occurs if a program
 attempts to read or write to a file under a user number different from the user
 number that was active when the file was opened.
 When the CCP loads and executes a transient program, it initializes the user num-
 ber to the value displayed in the system prompt. If the system prompt does not
 display a user number, user zero is implied. A transient program can change its user
 number by making a BDOS Set User function call. Changing the user number in this
 way does not affect the CCP's user number displayed in the system prompt. When
 the transient program terminates, the CCP's user number is restored. However, an
 option of the BDOS Program Chain command allows a program to pass its current
 user number and default drive to the chained program.
 User 0 has special properties under CP/M 3. When the current user number is not
 equal to zero, and if a requested file is not present under the current user number,
 the file system automatically attempts to open the file under user zero. If the file
 exists under user zero, and if it has the system attribute, t2', set, the file is opened
 from user zero. Note, however, that files opened in this way cannot be written to;
 they are available only for read access. This procedure allows utilities that may
 include overlays and any other commonly accessed files to be placed on user zero,
 but also be available for access from other user numbers. As a result, commonly
 needed utilities need not be copied to all user numbers on a directory, and you can
 control which user zero files are directly accessible from other user numbers.

2-18

2.3 BDOS File System CP/M 3 Programmer's Guide

 2.3.6 Directory Labels and XFCBs
 The BDOS file system includes two special types of FCBS: the XFCB and the
 Directory Label. The XFCB is an extended FCB that optionally can be associated
 with a file in the directory. If present, it contains the file's password. Note that
 password protected files and XFCBs are supported only in the banked version of
 CP/M 3. The format of the XFCB follows.

 Figure 2-1. XFCB Format
 dr - drive code (O - 16)
 file - filename field
 type - filetype field
 PM - password mode
 bit 7 - Read mode
 bit 6 - Write mode
 bit 5 - Delete mode
 ** - bit references are right to left,
 relative to 0
 sl,s2, rc - reserved for system use
 password - 8-byte password field (encrypted)
 reserved - 8-byte reserved area

2-19

2.3 BDOS File System CP/M 3 Programmer's Guide

 An XFCB can be created only on a drive that has a directory label, and only if the
 directory label has activated password protection. For drives in this state, an XFCB
 can be created for a file in two ways: by the BDOS Make function or by the BDOS
 Write File XFCB function. The BDOS Make function creates an XFCB if the calling
 program requests that a password be assigned to the created file. The BDOS Write
 File XFCB function can be used to assign a password to an existing file. Note that in
 the directory, an XFCB is identified by a drive byte value, byte 0 in the FCB, equal
 to 16 + N, where N equals the user number.
 For its drive, the directory label specifies if file password support is to be activated,
 and if date and time stamping for files is to be performed. The format of the Direc-
 tory Label follows.

 Figure 2-2. Directory Label Format
 dr - drive code (0 - 16)
 name - Directory Label name
 type - Directory Label type
 dl - Directory Label data byte
 bit 7 - require passwords for password
 protected files
 bit 6 - perform access time stamping
 bit 5 - perform update time stamping
 bit 4 -perform create time stamping
 bit 0 -Directory Label exists
 ** - bit references are right to left,
 relative to 0
 sl,s2,rc - n/a
 password - 8-byte password field (encrypted)
 tsl - 4-byte creation time stamp field
 ts2 - 4-byte update time stamp field

2-20

2.3 BDOS File System CP/M 3 Programmer's Guide

 Only one Directory Label can exist in a drive's directory. The Directory Label name
 and type fields are not used to search for a Directory Label; they can be used to
 identify a disk. A Directory Label can be created, or its fields can be updated by
 BDOS function 100, Set Directory Label. This function can also assign a Directory
 Label a password. The Directory Label password, if assigned, cannot be circum-
 vented, whereas file password protection is an option controlled by the Directory
 Label. Thus, access to the Directory Label password provides a kind of super-user
 status on that drive.
 The nonbanked version of CP/M 3 does not support file passwords. However, it
 does provide password protection of directory labels. The CP/M 3 RSX, DIRLBL.RSX,
 which implements BDOS Function 100 in the nonbanked version of CP/M 3, pro-
 vides this support.
 The BDOS file system has no function to read the Directory Label FCB directly.
 However, the Directory Label data byte can be read directly with the BDOS Function
 101, Return Directory Label. In addition, the BDOS Search functions, with a ? in the
 FCB drive byte, can be used to find the Directory Label on the default drive. In the
 directory, the Directory Label is identified by a drive byte value, byte 0 in the FCB,
 equal to 32, 20H.
 2.3.7 File Passwords
 Only the banked version of CP/M 3 supports file passwords. In the nonbanked
 version, all BDOS functions with password related options operate the same way the
 banked version does when passwords are not enabled.
 Files can be assigned passwords in two ways: by the Make File function or by the
 Write File XFCB function. A file's password can also be changed by the Write File
 XFCB function if the original password is supplied.
 Password protection is provided in one of three modes. Table 2-4 shows the differ-
 ence in access level allowed to BDOS functions when the password is not supplied.

2-21

2.3 BDOS File System CP/M 3 Programmer's Guide

 Table 2-4. Password Protection Modes
 Password Access level allowed wben the Password
 Mode is not supplied.
 1. Read The file cannot be read.
 2. Write The file can be read, but not modified.
 3. Delete The file can be modified, but not
 deleted.

 If a file is password protected in Read mode, the password must be supplied to open
 the file. A file protected in Write mode cannot be written to without the password.
 A file protected in Delete mode allows read and write access, but the user must
 'fy the password to delete the file, rename the file, or to modify the file's attri-
 speci
 butes. Thus, password protection in mode 1 implies mode 2 and 3 protection, and
 mode 2 protection implies mode 3 protection. All three modes require the user to
 specify the password to delete the file, rename the file, or to modify the file's attributes.
 If the correct password is supplied, or if password protection is disabled by the
 Directory Label, then access to the BDOS functions is the same as for a file that is
 not password protected. In addition, the Search For First and Search For Next func-
 tions are not affected by file passwords.
 Table 2-5 lists the BDOS functions that test for password.
 Table 2-5. BDOS Functions That Test For Password
 15. Open File
 19. Delete File
 23. Rename File
 30. Set File Attributes
 99. Truncate File
 100. Set Directory Label
 103. Write File XFCB

2-22

2.3 BDOS File System CP/M 3 Programmer's Guide

 File passwords are eight bytes in length. They are maintained in the XFCB Direc-
 tory Label in encrypted form. To make a BDOS function call for a file that requires
 a password, a program must place the password in the first eight bytes of the current
 DMA, or specify it with the BDOS function, Set Default Password, prior to making
 the function call.
 Note: the BDOS keeps an assigned default password value until it is replaced with a
 new assigned value.
 2.3.8 File Date and Time Stamps
 The CP/M 3 File System uses a special type of directory entry called an SFCB to
 record date and time stamps for files. When a directory has been initialized for date
 and time stamping, SFCBs reside in every fourth position of the directory. Each SFCB
 maintains the date and time stamps for the previous three directory entries as shown
 in Figure 2-3.

 Figure 2-3. Directory Record with SFCB
 This figure shows a directory record that contains an SFCB. Directory records consist
 of four directory entries, each 32 bytes long. SFCBs always occupy the last position
 of a directory record.

 The SFCB directory item contains five fields. The first field is one byte long and
 contains the value 21H. This value identifies the SFCB in the directory. The next
 three fields, the SFCB subfields, contain the date and time stamps for their corre-
 sponding FCB entries in the directory record. These fields are 10 bytes long. The last
 byte of the SFCB is reserved for system use. The format of the SFCB subfields is
 shown in Table 2-6.

2-23

2.3 BDOS File System CP/M 3 Programmer's Guide

 Table 2-6. SFCB Subfields Format
 Offset in Bytes I SFCB Subfield Contents
 0 - 3 Create or Access Date and Time Stamp field
 4 - 7 Update Date and Time Stamp field
 8 Password mode field
 9 Reserved

 An SFCB subfield contains valid information only if its corresponding FCB in the
 directory record is an extent zero FCB. This FCB is a file's first directory entry. For
 password protected files, the SFCB subfield also contains the password mode of the
 file. This field is zero for files that are not password protected. The BDOS Search and
 Search Next functions can be used to access SFCBs directly. In addition, BDOS
 Function 102 can return the file date and time stamps and password mode for a
 specified file. Refer to Section 3, function 102, for a description of the format of a
 date and time stamp field.
 CP/M 3 supports three types of file stamping: create, access, and update. Create
 stamps record when the file was created, access stamps record when the file was last
 opened, and update stamps record the last time the file was modified. Create and
 access stamps share the same field. As a result, file access stamps overwrite any create
 stamps.
 The CP/M 3 utility, INITDIR, initializes a directory for date and time stamping by
 placing SFCBs in every fourth directory entry. Date and time stamping is not sup-
 ported on disks that have not been initialized in this manner. For initialized disks the
 disks' Directory Label determines the type of date and time stamping supported for
 files on the drive. If a disk does not have a Directory Label, or if it is Read-Only, or
 if the disk's Directory Label does not specify date and time stamping, then date and
 time stamping for files is not performed. Note that the Directory Label is also time
 stamped, but these stamps are not made in an SFCB. Time stamp fields in the last
 eight bytes of the Directory Label record when it was created and last updated.
 Access stamping for Directory Labels is not supported.

2-24

2.3 BDOS File System CP/M 3 Programmer's Guide

 The BDOS file system uses the CP/M 3 system date and time when it records a
 date and time stamp. This value is maintained in a field in the System Control Block
 (SCB). On CP/M 3 systems that support a hardware clock, the BIOS module directly
 updates the SCB system date and time field. Otherwise, date and time stamps record
 the last initialized value for the system date and time. The CP/M 3 DATE utility can
 be used to set the system date and time.
 2.3.9 Record Blocking and Deblocking
 Under CP/M 3, the logical record size for disk I/O is 128 bytes. This is the basic
 unit of data transfer between the operating system and transient programs. However,
 on disk, the record size is not restricted to 128 bytes. These records, called physical
 records, can range from 128 bytes to 4K bytes in size. Record blocking and deblock-
 ing is required on systems that support drives with physical record sizes larger than
 128 bytes.
 The process of building up physical records from 128 byte logical records is called
 record blocking. This process is required in write operations. The reverse process of
 breaking up physical records into their component 128 byte logical records is called
 record deblocking. This process is required in read operations. Under CP/M 3, record
 blocking and deblocking is normally performed by the BDOS.
 Record deblocking implies a read-ahead operation. For example, if a transient
 program makes a BDOS function call to read a logical record that resides at the
 beginning of a physical record, the entire physical record is read into an internal
 buffer. Subsequent BDOS read calls for the remaining logical records access the
 buffer instead of the disk. Conversely, record blocking results in the postponement
 of physical write operations but only for data write operations. For example, if a
 ransient program makes a BDOS write call, the logical record is placed in a buffer
 equal in size to the physical record size. The write operation on the physical record
 t
 buffer is postponed until the buffer is needed in another I/O operation. Note that
 under CP/M 3, directory write operations are never postponed.
 Postponing physical record write operations has implications for some applications
 programs. For those programs that involve file updating, it is often critical to guar-
 antee that the state of the file on disk parallels the state of the file in memory after
 the update operation. This is only an issue on systems where physical write opera-
 tions are postponed because of record blocking and deblocking. If the system should
 crash while a physical buffer is pending, data would be lost. To prevent this loss of
 data, the BDOS Flush Buffers function, function 48, can be called to force the write
 of any pending physical buffers.

2-25

2.3 BDOS File System CP/M 3 Programmer's Guide

 Note: the CCP automatically discards all pending physical data buffers when it
 receives control following a system warm start. However, the BDOS file system
 automatically makes a Flush Buffers call in the Close File function. Thus, it is suffi-
 cient to close a file to ensure that all pending physical buffers for that file are written
 to the disk.
 2.3.10 Multi-Sector I/O
 CP/M 3 can read or write multiple 128-byte records in a single BDOS function
 call. This process, called multi-sector I/O, is useful primarily in sequential read and
 write operations, particularly on drives with physical record sizes larger than 128
 bytes. In a multi-sector I/O operation, the BDOS file system bypasses, when possible,
 all intermediate record buffering. Data is transferred directly between the TPA and
 the drive. In addition, the BDOS informs the BIOS when it is reading or writing
 multiple physical records in sequence on a drive. The BIOS can use this information
 to further optimize the I/O operation resulting in even better performance. Thus, the
 primary objective of multi-sector I/O is to improve sequential I/O performance. The
 actual improvement obtained, however, depends on the hardware environment of the
 host system, and the implementation of the BIOS.
 The number of records that can be supported with multi-sector I/O ranges from 1
 to 128. This value can be set by BDOS function 44, Set multi-sector Count. The
 multi-sector count is set to one when a transient program begins execution. However,
 the CP/M 3 LOADER module executes with the multi-sector Count set to 128 unless
 the available TPA space is less than 16K. In addition, the CP/M 3 PIP utility also
 sets the multi-sector count to 128 when sufficient buffer space is available. Note that
 the greatest potential performance increases are obtained when the multi-sector count
 is set to 128. Of course, this requires a 16K buffer.
 The multi-sector count determines the number of operations to be performed by
 the following BDOS functions:
 o Sequential Read and Write functions
 o Random Read and Write functions including Write Random with Zero Fill
 If the multi-sector count is N, calling one of the above functions is equivalent to
 making N function calls. If a multi-sector I/O operation is interrupted with an error
 such as reading unwritten data, the file system returns in register H the number of
 128-byte records successfully processed.

2-26

2.3 BDOS File System CP/M 3 Programmer's Guide

 2.3.11 Disk Reset and Removable Media
 The BDOS functions, Disk Reset (function 13) and Reset Drive (function 37) allow
 a program to control when a disk's directory is to be reinitialized for file operations.
 This process of initializing a disk's directory is called logging-in the drive. When
 CP/M 3 is cold started, all drives are in the reset state. Subsequently, as drives are
 referenced, they are automatically logged-in by the file system. Once logged-in, a
 drive remains in the logged-in state until it is reset by BDOS function 13 or 37.
 Following the reset operation, the drive is again automatically logged-in by the file
 system when it is next used. Note that BDOS functions 13 and 37 have similar effects
 except that function 13 is directed to all drives on the system. Any combination of
 drives can be reset with Function 37.
 Logging-in a drive consists of several steps. The most important step is the initiali-
 zation of the drive's allocation vector. The allocation vector records the allocation
 and deallocation of data blocks to files, as files are created, extended, deleted, and
 truncated, Another function performed during drive log-in is the initialization of the
 directory check-sum vector. The file system uses the check-sum vector to detect media
 changes on a drive. Note that permanent drives, which are drives that do not support
 media changes, might not have check-sum vectors. If directory hashing has been
 specified for the drive, a BIOS and GENCPM option, the file system creates a hash
 table for the directory during log-in.
 The primary use of the drive reset functions is to prepare for a media change on a
 drive. Subsequently, when the drive is accessed by a BDOS function call, the drive is
 automatically logged-in. Resetting a drive has two important side effects. First of all,
 any pending blocking/deblocking buffers on the reset drive are discarded. Secondly,
 any data blocks that have been allocated to files that have not been closed are lost.
 An application program should close files, particularly files that have been written to,
 prior to resetting a drive.
 Although CP/M 3 automatically relogs in removable media when media changes
 are detected, the application program should still explicitly reset a drive before
 prompting the user to change disks.

2-27

2.3 BDOS File System CP/M 3 Programmer's Guide

 2.3.12 File Byte Counts
 Although the logical record size of CP/M 3 is restricted to 128 bytes, CP/M 3 does
 provide a mechanism to store and retrieve a byte count for a file. This facility can
 identify the last byte of the last record of a file. The BDOS Compute File Size
 function returns the random record number, plus 1, of the last record of a file.
 The BDOS Set File Attributes function can set a file's byte count. Conversely, the
 Open function can return a file's byte count to the cr field of the FCB. The BDOS
 Search and Search Next functions also return a file's byte count. These functions
 return the byte count in the sl field of the FCB returned in the current DMA buffer
 (see BDOS Functions Returned 17 and 26).
 Note that the file system does not access or update the byte count value in file read
 or write operations. However, the BDOS Make File function does set the byte count
 of a file to zero when it creates a file in the directory.
 2.3.13 BDOS Error Handling
 The BDOS file system responds to error situations in one of three ways:
 Method 1. It returns to the calling program with return codes in register
 A, H, and L identifying the error.
 Method 2. It displays an error message on the console, and branches to
 the BIOS warm start entry point, thereby terminating execu-
 tion of the calling program.
 Method 3. It displays an error message on the console, and returns to
 the calling program as in method 1.
 The file system handles the majority of errors it detects by method 1. Two examples
 of this kind of error are the file not found error for the open function and the reading
 unwritten data error for a read function. More serious errors, such as disk I/O errors,
 are usually handled by method 2. Errors in this category, called physical and extended
 errors, can also be reported by methods 1 and 3 under program control.

2-28

2.3 BDOS File System CP/M 3 Programmer's Guide

 The BDOS Error Mode, which can exist in three states, determines how the file
 system handles physical and extended errors. In the default state, the BDOS displays
 the error message, and terminates the calling program, method 2. In return error
 mode, the BDOS returns control to the calling program with the error identified in
 registers A, H, and L, method 1. In return and display mode, the BDOS returns
 control to the calling program with the error identified in registers A, H, and L, and
 also displays the error message at the console, method 3. While both return modes
 protect a program from termination because of a physical or extended error, the
 return and display mode also allows the calling program to take advantage of the
 built-in error reporting of the BDOS file system. Physical and extended errors are
 displayed on the console in the following format:
 CP/M Error on d: error message
 BDOS function = nn File = filename.typ
 where d identifies the drive selected when the error condition is detected; error mes-
 sage identifies the error; nn is the BDOS function number, and filename.typ identifies
 the file specified by the BDOS function. If the BDOS function did not involve an
 FCB, the file information is omitted. Note that the second line of the above error
 message is displayed only in the banked version of CP/M 3 if expanded error message
 reporting is requested in GENCPM. It is not displayed in the nonbanked version of
 CP/M 3.
 The BDOS physical errors are identified by the following error messages:
 o Disk I/O
 o Invalid Drive
 o Read-Only File
 o Read-Only Disk
 The Disk I/O error results from an error condition returned to the BDOS from the
 BIOS module. The file system makes BIOS read and write calls to execute file-related
 BDOS calls. If the BIOS read or write routine detects an error, it returns an error
 code to the BDOS resulting in this error.
 The Invalid Drive error also results from an error condition returned to the BDOS
 from the BIOS module. The BDOS makes a BIOS Select Disk call prior to accessing
 a drive to perform a requested BDOS function. If the BIOS does not support the
 selected disk, the BDOS returns an error code resulting in this error message.

2-29

2.3 BDOS File System CP/M 3 Programmer's Guide

 The Read-Only File error is returned when a program attempts to write to a file
 that is marked with the Read-Only attribute. It is also returned to a program that
 attempts to write to a system file opened under user zero from a nonzero user
 number. In addition, this error is returned when a program attempts to write to a
 file password protected in Write mode if the program does not supply the correct
 password.
 The Read-Only Disk error is returned when a program writes to a disk that is in
 read-only status. A drive can be placed in read-only status explicitly with the BDOS
 Write Protect Disk function.
 The BDOS extended errors are identified by the following error messages:
 o Password Error
 o File Exists
 o ? in Filename
 The File Password error is returned when the file password is not supplied, or
 when it is incorrect. This error is reported only by the banked version of CP/M 3.
 The File Exists error is returned by the BDOS Make File and Rename File func-
 tions when the BDOS detects a conflict such as a duplicate filename and type.
 The ? in Filename error is returned when the BDOS detects a ? in the filename or
 type field of the passed FCB for the BDOS Rename File, Set File Attributes, Open
 File, Make File, and Truncate File functions.
 The following paragraphs describe the error return code conventions of the BDOS
 file system functions. Most BDOS file system functions fall into three categories in
 regard to return codes: they return an Error Code, a Directory Code, or an Error
 Flag. The error conventions of CP/M 3 are designed to allow programs written for
 earlier versions of CP/M to run without modification.
 The following BDOS functions return an Error Code in register A.
 20. Read Sequential
 21. Write Sequential
 33. Read Random
 34. Write Random
 40. Write Random w/Zero Fill

2-30

2.3 BDOS File System CP/M 3 Programmer's Guide

 The Error Code definitions for register A are shown in Table 2-7.
 Table 2-7. Register A BDOS Error Codes
 Code Meaning
 00 Function successful
 255 Physical error : refer to register H
 01 Reading unwritten data or no available directory space (Write
 Sequential)
 02 No available data block
 03 Cannot close current extent
 04 Seek to unwritten extent
 05 No available directory space
 06 Random record number out of range
 09 Invalid FCB (previous BDOS close call returned an error code
 and invalidated the FCB)
 10 Media Changed (A media change was detected on the FCB's
 drive after the FCB was opened)

 For BDOS read or write functions, the file system also sets register H when the
 returned Error Code is a value other than zero or 255. In this case, register H
 contains the number of 128-byte records successfully read or written before the error
 was encountered. Note that register H can contain only a nonzero value if the calling
 program has set the BDOS Multi-Sector Count to a value other than one; otherwise
 register H is set to zero. On successful functions, Error Code = 0, register H is also
 set to zero. If the Error Code equals 255, register H contains a physical error code
 (see Table 2-11).

2-31

2.3 BDOS File System CP/M 3 Programmer's Guide

 2.3 BDOS File System CP/M 3 Programmer's Guide
 The following BDOS functions return a Directory Code in register A:
 15. Open File
 16. Close File
 17. Search For First
 18. Search For Next
 19. Delete File
 22. Make File
 23. Rename File
 30. Set File Attributes
 35. Compute File Size
 99. Truncate File
 * 100. Set Directory Label
 102. Read File Date Stamps and Password Mode
 ** 103. Write File XFCB
 * - This function is supported in the DIRLBL.RSX in the nonbanked version of
 CP/M 3.
 ** - This function is supported only in the banked version of CP/M 3.
 The Directory Code definitions for register A are shown in Table 2-8.
 Table 2-8. BDOS Directory Codes
 Code Meaning
 00 - 03: successful function
 255 unsuccessful function

 With the exception of the BDOS search functions, all functions in this category
 return with the directory code set to zero on successful returns. However, for the
 search functions, a successful Directory Code also identifies the relative starting posi-
 tion of the directory entry in the calling program's current DMA buffer.

2-32

2.3 BDOS File System CP/M 3 Programmer's Guide

 If the Set BDOS Error Mode function is used to place the BDOS in return error
 mode, the following functions return an Error Flag on physical errors:
 14. Select Disk
 46. Get Disk Free Space
 48. Flush Buffers
 98. Free Blocks
 101. Return Directory Label Data
 The Error Flag definition for register A is shown in Table 2-9.
 Table 2-9. BDOS Error Flags
 Code I Meaning
 00 successful function
 255 physical error : refer to register H

 The BDOS returns nonzero values in register H to identify a physical or extended
 error if the BDOS Error Mode is in one of the return modes. Except for functions
 that return a Directory Code, register A equal to 255 indicates that register H iden-
 tifies the physical or extended error. For functions that return a Directory Code, if
 register A equals 255, and register H is not equal to zero, register H identifies the
 physical or extended error. Table 2-10 shows the physical and extended error codes
 returned in register H.

2-33

2.3 BDOS File System CP/M 3 Programmer's Guide

 2.3 BDOS File System CP/M 3 Programmer's Guide
 Table 2-10. BDOS Physical and Extended Errors
 Code Meaning
 00 - no error, or not a register H error
 01 - Disk I/O error
 02 - Read-Only Disk
 03 - Read-Only File or File Opened
 under user zero from another user
 number or file password protected
 in write mode and correct pass-
 word not specified.
 04 - Invalid Drive : drive select error
 07 - Password Error
 08 - File Exists
 09 - ? in Filename

 The following two functions represent a special case because they return an address
 in registers H and L.
 27. Get Addr(Alloc)
 31. Get Addr(Disk Parms)
 When the BDOS is in return error mode, and it detects a physical error for these
 functions, it returns to the calling program with registers A, H, and L all set to 255.
 Otherwise, they return no error code.
 2.4 Page Zero Initialization
 Page Zero is the region of memory located from 0000H to 00FFH. This region
 contains several segments of code and data that are used by transient programs while
 running under CP/M 3. The code and data areas are shown in Table 2-11 for reference.

2-34

2.3 BDOS File System CP/M 3 Programmer's Guide

 Table 2-11. Page Zero Areas
 Location Contents
 From TO
 0000H - 0002H Contains a jump instruction to the BIOS warm start entry
 point at BIOS - base + 3. The address at location OOOIH can
 also be used to make direct BIOS calls to the BIOS console
 status, console input, console output, and list output primitive
 functions.
 0003H - 0004H (Reserved)
 0005H - 0007H Contains a jump instruction to the BDOS, the LOADER, or
 to the most recently added RSX, and serves two purposes:
 JMP 0005H provides the primary entry point to the BDOS,
 and LHLD 0006H places the address field of the jump
 instruction in the HL register pair. This value, minus one, is
 the highest address of memory available to the transient
 program.
 0008H - 003AH Reserved interrupt locations for Restarts 1 - 7
 003BH - 004FH (Not currently used - reserved)
 0050H Identifies the drive from which the transient program was load-
 ed. A value of one to sixteen identifies drives A through P.
 0051H - 0052H Contains the address of the password field of the first command-
 tail operand in the default DMA buffer beginning at 0080H.
 The CCP sets this field to zero if no password for the first
 command-tail operand is specified.
 0053H Contains the length of the password field for the first command-
 tail operand. The CCP also sets this field to zero if no password
 for the first command tail is specified.
 0054H - 0055H Contains the address of the password field of the second corn-
 mand-tail operand in the default DMA buffer beginning at
 0080H. The CCP sets this field to zero if no password for the
 second command-tail operand is specified.

2-35

2.4 Page Zero Initialization CP/M 3 Programmer's Guide

 Table 2-11. (continued)
 Location Contents
 From TO
 005 6H Contains the length of the password field for the second corn-
 mand-tail operand. The CCP also sets this field to zero if no
 password for the second command tail is specified.
 0057H - 005BH (Not currently used - reserved)
 005CH - 007BH Default File Control Block, FCB, area 1 initialized by the CCP
 from the first command-tail operand of the command line, if
 it exists.
 006CH - 007BH Default File Control Block, FCB, area 2 initialized by the CCP
 from the second command-tail operand of the command line,
 if it exists.
 Note: this area overlays the last 16 bytes of default FCB
 area 1. To use the information in this area, a transient program
 must copy it to another location before using FCB area 1.
 007CH Current record position of default FCB area 1. This field is used
 with default FCB area 1 in sequential record processing.
 007DH - 007FH Optional default random record position. This field is an exten-
 sion of default FCB area 1 used in random record processing.
 0080H - OOFFH Default 128-byte disk buffer. This buffer is also filled with the
 command tail when the CCP loads a transient program.

2-36

2.4 Page Zero Initialization CP/M 3 Programmer's Guide

 The CCP initializes Page Zero prior to initiating a transient program. The fields at
 0050H and above are initialized from the command line invoking the transient pro-
 gram. The command line format was described in detail in Section 1.6.2. To sum-
 marize, a command line usually takes the form:
 <command> <command tail>
 where
 <command> = > <file Spec>
 <command tail> = > (no command tail)
 = > <file Spec>
 = > <file spec><delimiter><file spec>
 <file spec> = > {d:}filename{.type} {;password}
 The CCP initializes the command drive field at 0050H to the drive index, A = 1,
 P = 16, of the drive from which the transient program was loaded.
 The default FCB at 005CH is defined if a command tail is entered. Otherwise, the
 fields at 005CH, 0068H to 006BH are set to binary zeros, the fields from 005DH to
 0067H are set to blanks. The fields at 0051H through 0053H are set if a password
 is specified for the first <file Spec> of the command tail. If not, these fields are set to
 zero.
 The default FCB at 006CH is defined if a second <file spec> exists in the com-
 mand tail. Otherwise, the fields at 006CH, 0078H to 007BH are set to binary zeros,
 the fields from 005DH to 0067H are set to blanks. The fields at 0054H through
 0056H are set if a password is specified for the second <file spec> of the command
 tail. If not, these fields are set to zero.
 Transient programs often use the default FCB at 005CH for file operations. This
 FCB may even be used for random file access because the three bytes starting at
 007DH are available for this purpose. However, a transient program must copy the
 contents of the default FCB at 006CH to another area before using the default FCB
 at 005CH, because an open operation for the default FCB at 005CH overwrites the
 FCB data at 006CH.

2-37

2.4 Page Zero Initialization CP/M 3 Programmer's Guide

 The default DMA address for transient programs is 0080H. The CCP also initial-
 izes this area to contain the command tall of the command line. The first position
 contains the number of characters in the command line, followed by the command
 line characters. The character following the last command tail character is set to
 binary zero. The command line characters are preceded by a leading blank and are
 translated to ASCII upper-case. Because the 128-byte region beginning at 0080H is
 the default DMAI, the BDOS file system moves 128-byte records to this area with
 read operations and accesses 128-byte records from this area with write operations.
 The transient program must extract the command tail information from this buffer
 before performing file operations unless it explicitly changes the DMA address with
 the BDOS Set DMA Address function.
 The Page Zero fields of 0051H through OOS6H locate the password fields of the
 first two file specifications in the command tail if they exist. These fields are provided
 so that transient programs are not required to parse the command tail for password
 fields. However, the transient program must save the password, or change the DMA
 address before performing file operations.
 The following example illustrates the initialization of the command line fields of
 Page Zero. Assuming the following command line is typed at the console:
 D>A:PROGRAM B:FILE,TYPE ; PASS C ;FILE.TYPE ; PASSWORD
 A hexadecimal dump of 0050H to 0OA5H would show the Page Zero initialization
 performed by the CCP.
 005OH: 01 0D 00 04 9D 00 08 00 00 00 00 00 02 46 49 4C FIL
 006OH: 45 20 20 20 20 54 59 50 00 00 00 00 03 46 49 4C E TYP FIL
 007OH: 45 20 20 20 20 54 59 50 00 00 00 00 00 00 00 00 E TYP
 0050H: 24 20 42 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 . . B:FILE.TYP;PAS
 009OH: 53 20 43 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 S C:FILE.TYP;PAS
 OOAOH: 53 57 4F 52 44 00 SWORD.

End of Section 2

2-38

2.4 Page Zero Initialization CP/M 3 Programmer's Guide

Section 3

BDOS Function Calls

 This section describes each CP/M 3 system function, including the parameters a
 program must pass when calling the function, and the values the function returns to
 the program. The functions are arranged numerically for easy reference. You should
 be familiar with the BDOS calling conventions and other concepts presented in Section.,
 before referencing this section.

 BDOS FUNCTION 0: SYSTEM RESET
 Entry Parameters:
 Register C: 00H

 The System Reset function terminates the calling program and returns control to
 the CCP via a warm start sequence (see Section 1.3.2). Calling this function has the
 same effect as a 'ump to location 0000H of Page Zero.
 Note that the disk subsystem is not reset by System Reset under CP/M 3. The
 calling program can pass a return code to the CCP by calling Function 108, Get/Set
 Program Return Code, prior to making a System Reset call or jumping to location
 0000H.

3-1

 BDOS FUNCTION 1: CONSOLE INPUT
 Entry Parameters:
 Register C: 01H
 Returned Value:

 Register A: ASCII Character

 The Console Input function reads the next character from the logical console,
 CONIN:, to register A. Graphic characters, along with carriage return, line-feed, and
 backspace, CTRL-H, are echoed to the console. Tab characters, CTR-L-1, are expanded
 in columns of 8 characters. CTRL-S, CTRL-Q, and CTRL-P are normally intercepted
 as described below. All other non-graphic characters are returned in register A but
 are not echoed to the console.
 When the Console Mode is in the default state (see Section 2.2.1), Function 1
 intercepts the stop scroll, CTRL-S, start scroll, CTRL-Q, and start/stop printer echo,
 CTRL-P, characters. Any characters that are typed following a CTRL-S and preced-
 ing a CTRL-Q are also intercepted. However, if start/stop scroll has been disabled
 by the Console Mode, the CTRL-S, CTRL-Q, and CTRL-P characters are not inter-
 cepted. Instead, they are returned in register A, but are not echoed to the console.
 If printer echo has been invoked, all characters that are echoed to the console are
 also sent to the list device, LST:.
 Function 1 does not return control to the calling program until a non-intercepted
 character is typed, thus suspending execution if a character is not ready.

3-2

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 2: CONSOLE OUTPUT
 Entry Parameters:
 Registers C: 02H
 E: ASCII Character

 The Console Output function sends the ASCII character from register E to the
 logical console device, CONOUT:. When the Console Mode is in the default state
 (see Section 2.2.1), Function 2 expands tab characters, CTRL-1, in columns of 8
 characters, checks for stop scroll, CTRL-S, start scroll, CTRL-Q, and echoes charac-
 ters to the logical list device, LST:, if printer echo, CTRL-P, has been invoked.

3-3

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 3: AUXILIARY INPUT
 Entry Parameters:
 Register C: 03H
 Returned Value:
 Register A: ASCII Character

 The Auxiliary Input function reads the next character from the logical auxiliary
 input device, AUXIN:, into register A. Control does not return to the calling program
 'I the character is read.
 unti

3-4

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 4: AUXILIARY OUTPUT
 Entry Parameters:
 Registers C: 04H
 E: ASCII Character

 The Auxiliary Output function sends the ASCII character from register E to the
 logical auxiliary output device, AUXOUT:.

3-5

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 5: LIST OUTPUT
 Entry Parameters:
 Registers C: 05H
 E: ASCII Character
 The List Output function sends the ASCII character in register E to the logical list
 device, LST:.

3-6

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 6: DIRECT CONSOLE I/0
 Entry Parameters:
 Registers C: 06H
 E: 0FFH (input/status) or
 0FEH (status) or
 0FDH (input) or
 char (output)
 Returned Value:
 Register A: char or status (no value)

 CP/M 3 supports direct I/O to the logical console, CONIN:, for those specialized
 applications where unadorned console input and output is required. Use Direct Con-
 sole I/O carefully because it bypasses all the normal control character functions.
 Programs that perform direct I/O through the BIOS under previous releases of CP/M
 should be changed to use direct I/O so that they can be fully supported under future
 releases of MP/M and CP/M.
 A program calls Function 6 by passing one of four different values in register E.
 The values and their meanings are summarized in Table 3-1.

3-7

BDOS Function Calls CP/M 3 Programmers Guide

 3 BDOS Calls: Function 6 CP/M 3 Programmer's Guide
 Table 3-1. Function 6 Entry Parameters
 Register
 E value Meaning
 OFFH Console input/status command returns an input character; if no
 character is ready, a value of zero is returned.
 OFEH Console status command (On return, register A contains 00 if no
 character is ready; otherwise it contains FFH.)
 OFDH Console input command, returns an input character; this func-
 tion will suspend the calling process until a character is ready.
 ASCII Function 6 assumes that register E contains a valid ASCII char-
 character acter and sends it to the console.

3-8

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 7: AUXILIARY INPUT STATUS
 Entry Parameters:
 Register C: 07H
 Returned Value:
 Register A: Auxiliary Input Status

 The Auxiliary Input Status function returns the value OFFH in register A if a
 character is ready for input from the logical auxiliary input device, AUXIN:. If no
 character is ready for input, the value OOH is returned.

3-9

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 8: AUXILIARY OUTPUT STATUS
 Entry Parameters:
 Register C: 08H
 Returned Value:
 Register A: Auxiliary Output Status

 The Auxiliary Output Status function returns the value OFFH in register A if the
 logical auxiliary output device, AUXOUT:, is ready to accept a character for output.
 If the device is not ready for output, the value OOH is returned.

3-10

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 9: PRINT STRING
 Entry Parameters:
 Registers C: 09H
 DE: String Address

 The Print String function sends the character string addressed by register pair DE
 to the logical console, CONOUT:, until it encounters a delimiter in the string. Usu-
 ally the delimiter is a dollar sign, $, but it can be changed to any other value by
 Function 110, Get/Set Output Delimiter. If the Console Mode is in the default state
 (see Section 2.2.1), Function 9 expands tab characters, CTRL-1, in columns of 8
 characters. It also checks for stop scroll, CTRL-S, start scroll, CTRL-Q, and echoes
 to the logical list device, LST:, if printer echo, CTRL-P, has been invoked.

3-11

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 10: READ CONSOLE BUFFER

 Entry Parameters:
 Registers C: 0AH
 DE: Buffer Address
 Returned Value:
 Console Characters in Buffer

 The Read Console Buffer function reads a line of edited console input from the
 logical console, CONIN:, to a buffer that register pair DE addresses. It terminates
 input and returns to the calling program when it encounters a return, CTRL-M, or a
 line feed, CTRL-J, character. Function 10 also discards all input characters after the
 input buffer is filled. In addition, it outputs a bell character, CTRL-G, to the console
 when it discards a character to signal the user that the buffer is full. The input buffer
 addressed by DE has the following format:

Scan and insert illustration here.
 where mx is the maximum number of characters which the buffer holds, and nc is
 the number of characters placed in the buffer. The characters entered by the operator
 follow the nc value. The value mx must be set prior to making a Function 10 call
 and may range in value from 1 to 2SS. Setting mx to zero is equivalent to setting mx
 to one. The value nc is returned to the calling program and may range from zero to
 mx. If nc < mx, then uninitialized positions follow the last character, denoted by ??
 in the figure. Note that a terminating return or line feed character is not placed in
 the buffer and not included in the count nc.
 If register pair DE is set to zero, Function 10 assumes that an initialized input
 buffer is located at the current DMA address (see Function 26, Set DMA Address).
 This allows a program to put a string on the screen for the user to edit. To initialize
 the input buffer, set characters cl through cn to the initial value followed by a binary
 zero terminator.

3-12

BDOS Function Calls CP/M 3 Programmers Guide

 When a program calls Function 10 with an initialized buffer, Function 10 operates
 as if the user had typed in the string. When Function 10 encounters the binary zero
 terminator, it accepts input from the console. At this point, the user can edit the
 initialized string or accept it as it is by pressing the RETURN key. However, if the
 initialized string contains a return, CTRL-M, or a linefeed, CTRL-J, character, Func-
 tion 10 returns to the calling program without giving the user the opportunity to edit
 the string.
 The level of console editing supported by Function 10 differs for the banked and
 nonbanked versions of CP/M 3. Refer to the CPIM Plus (CPIM Version 3) Operating
 System User's Guide for a detailed description of console editing. In the nonbanked
 version, Function 10 recognizes the edit control characters summarized in Table 3-2.

 Table 3-2. Edit Control Characters (Nonbanked CP/M 3)
 Character -T Edit Control Function
 rub/del Removes and echoes the last character; GENCPM can change
 this function to CTRL-H
 CTRL-C Reboots when at the beginning of line; the Console Mode can
 disable this function
 CTRL-E Causes physical end of line
 CTRL-H Backspaces one character position; GENCPM can change this
 function to rub/del
 CTRL-J (Line-feed) terminates input line
 CTRL-M (Return) terminates input line
 CTRL-P Echoes console output to the list device
 CTRL-R Retypes the current line after new line
 CTRL-U Removes current line after new line
 CTRL-X Backspaces to beginning of current line

3-13

BDOS Function Calls CP/M 3 Programmers Guide

 The banked version of CP/M 3 expands upon the editing provided in the non-
 banked version. The functionality of the two versions is similar when the cursor is
 positioned at the end of the line. However, in the banked version, the user can move
 the cursor anywhere in the current line, insert characters, delete characters, and
 perform other editing functions. In addition, the banked version saves the previous
 command line; it can be recalled when the current line is empty. Table 3-3 summa-
 rizes the edit control characters supported by Function 10 in the banked version of
 CP/M 3.
 Table 3-3. Edit Control Characters (Banked CP/M 3)
 Character Edit Control Function
 rub/del Removes and echoes the last character if at the end of the line;
 otherwise deletes the character to the left of the current cursor
 position; GENCPM can change this function to CTRL-H.
 CTRL-A Moves cursor one character to the left.
 CTRL-B Moves cursor to the beginning of the line when not at the begin-
 ning; otherwise moves cursor to the end of the line.
 CTRL-C Reboots when at the beginning of line; the Console Mode can
 disable this function.
 CTRL-E Causes physical end-of-line; if the cursor is positioned in the
 middle of a line, the characters at and to the right of the cursor
 are displayed on the next line.
 CTRL-F Moves cursor one character to the right.
 CTRL-G Deletes the character at the current cursor position when in the
 middle of the line; has no effect when the cursor is at the end of
 the line.
 CTRL-H Backspaces one character position when positioned at the end
 of the line,; otherwise deletes the character to the left of the
 cursor; GENCPM can change this function to rub/del.

3-14

BDOS Function Calls CP/M 3 Programmers Guide

 Table 3-3. (continued)
 Character Edit Control Function
 CTRL-J (Line-feed) terminates input; the cursor can be positioned any-
 where in the line; the entire input line is accepted; sets the pre-
 vious line buffer to the input line.
 CTRL-K Deletes all characters to the right of the cursor along with the
 character at the cursor.
 CTRL-M (Return) terminates input; the cursor can be positioned any-
 where in the line; the entire input line is accepted; sets the pre-
 vious line buffer to the input line.
 CTRL-P Echoes console output to the list device.
 CTRL-R Retypes the characters to the left of the cursor on the new line.
 CTRL-U Updates the previous line buffer to contain the characters to the
 left of the cursor; deletes current line, and advances to new line.
 CTRL-W Recalls previous line if current line is empty; otherwise moves
 cursor to end-of-line.
 CTRL-X Deletes all characters to the left of the cursor.

 For banked systems, Function 10 uses the console width field defined in the System
 Control Block. If the console width is exceeded when the cursor is positioned at the
 end of the line, Function 10 automatically advances to the next line. The beginning
 of the line can be edited by entering a CTRL-R.
 When a character is typed while the cursor is positioned in the middle of the line,
 the typed character is inserted into the line. Characters at and to the right of the
 cursor are shifted to the right. If the console width is exceeded, the characters disap-
 pear off the right of the screen. However, these characters are not lost. They reappear
 if characters are deleted out of the line, or if a CTRL-E is typed.

3-15

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 11: GET CONSOLE STATUS
 Entry Parameters:
 Register C: OBH
 Returned Value:
 Register A: Console Status

 The Get Console Status function checks to see if a character has been typed at
 the logical console, CONIN:. If the Console Mode is in the default state (see
 Section 2.2.1), Function 11 returns the value 01H in register A when a character is
 ready. If a character is not ready, it returns a value of 00H.
 If the Console Mode is in CTRL-C Only Status mode, Function 11 returns the
 value 01H in register A only if a CTRL-C has been typed at the console.

3-16

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 12: RETURN VERSION NUMBER
 Entry Parameters:
 Register C: 0CH
 Returned Value:
 Register HL: Version Number

 The Return Version Number function provides information that allows version
 independent programming. It returns a two-byte value in register pair HL: H con-
 tains OOH for CP/M and L contains 31H, the BDOS file system version number.
 Function 12 is useful for writing applications programs that must run on multiple
 versions of CP/M and MP/M.

3-17

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 13: RESET DISK SYSTEM
 Entry Parameters:
 Register C: ODH

 The Reset Disk System function restores the file system to a reset state where all
 the disk drives are set to read-write (see Functions 28 and 29), the default disk is set
 to drive A, and the default DMA address is reset to 0080H. This function can be
 used, for example, by an application program that requires disk changes during
 operation. Function 37, Reset Drive, can also be used for this purpose.

3-18

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 14: SELECT DISK
 Entry Parameters:
 Registers C: 0EH
 Returned Value: E: Selected Disk
 Registers A: Error Flag
 H: Physical Error

 The Select Disk function designates the disk drive named in register E as the
 default disk for subsequent BDOS file operations. Register E is set to 0 for drive A,
 1 for drive B, and so on through 15 for drive P in a full 16-drive system. In addition,
 Function 14 logs in the designated drive if it is currently in the reset state. Logging-
 in a drive activates the drive's directory until the next disk system reset or drive reset
 operation.
 FCBs that specify drive code zero (dr = 00H) automatically reference the currently
 selected default drive. FCBs with drive code values between 1 and 16, however,
 gnore the selected default drive and directly reference drives A through P.
 Upon return, register A contains a zero if the select operation was successful. If a
 physical error was encountered, the select function performs different actions depend-
 ing on the BDOS error mode (see Function 45). If the BDOS error mode is in the
 'default mode, a message identifying the error is displayed at the console, and the
 calling program is terminated. Otherwise, the select function returns to the calling
 program with register A set to OFFH and register H set to one of the following
 physical error codes:
 01 Disk I/O Error
 04 Invalid drive

3-19

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 15: OPEN FILE
 Entry Parameters:
 Registers C: OFH
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Physical or Extended Error

 The Open File function activates the FCB for a file that exists in the disk directory
 under the currently active user number or user zero. The calling program passes the
 address of the FCB in register pair DE, with byte 0 of the FCB specifying the drive,
 bytes 1 through 11 specifying the filename and filetype, and byte 12 specifying the
 extent. Usually, byte 12 of the FCB is initialized to zero.
 If the file is password protected in Read mode, the correct password must be
 placed in the first eight bytes of the current DMA, or have been previously estab-
 lished as the default password (see Function 106). If the current record field of the
 FCB, cr, is set to OFFH, Function 15 returns the byte count of the last record of the
 file in the cr field. You can set the last record byte count for a file with Function 30,
 Set File Attributes. Note that the current record field of the FCB, cr, must be zeroed
 by the calling program before beginning read or write operations if the file is to be
 accessed sequentially from the first record.
 If the current user is non-zero, and the file to be opened does not exist under the
 current user number, the open function searches user zero for the file. If the file exists
 under user zero, and has the system attribute, t2', set, the file is opened under user
 zero. Write operations are not supported for a file that is opened under user zero in
 this manner.

3-20

BDOS Function Calls CP/M 3 Programmers Guide

 If the open operation is successful, the user's FCB is activated for read and write
 operations. The relevant directory information is copied from the matching directory
 FCB into bytes d0 through dn of the FCB. If the file is opened under user zero when
 the current user number is not zero, interface attribute f8' is set to one in the user's
 FCB. In addition, if the referenced file is password protected in Write mode, and the
 correct password was not passed in the DMA, or did not match the default pass-
 word, interface attribute f7' is set to one. Write operations are not supported for an
 activated FCB if interface attribute f7' or f8' is true.
 When the open operation is successful, the open function also makes an Access
 date and time stamp for the opened file when the following conditions are satisfied:
 the referenced drive has a directory label that requests Access date and time stamp-
 ing, and the FCB extent number field is zero.
 Upon return, the Open File function returns a directory code in register A with the
 value OOH if the open was successful, or FFH, 255 decimal, if the file was not found.
 Register H is set to zero in both of these cases. If a physical or extended error was
 encountered, the Open File function performs different actions depending on the
 BDOS error mode (see Function 45). If the BDOS error mode is in the default mode,
 a message identifying the error is displayed at the console and the program is termi-
 nated. Otherwise, the Open File function returns to the calling program with register
 A set to OFFH, and register H set to one of the following physical or extended error
 codes:
 01 : Disk I/O Error
 04 : Invalid drive error
 07 : File password error
 09 : ? in the FCB filename or filetype field

3-21

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 16: CLOSE FILE
 Entry Parameters:
 Registers C: 10H
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Physical or Extended Error

 The Close File function performs the inverse of the Open File function. The calling
 program passes the address of an FCB in register pair DE. The referenced FCB must
 have been previously activated by a successful Open or Make function call (see
 Functions 15 and 22). Interface attribute f5' specifies how the file is to be closed as
 shown below:
 f5' = 0 - Permanent close (default mode)
 f5' = 1 - Partial close
 A permanent close operation indicates that the program has completed file operations
 on the file. A partial close operation updates the directory, but indicates that the file
 is to be maintained in the open state.
 If the referenced FCB contains new information because of write operations to the
 FCB, the close function permanently records the new information in the referenced
 disk directory. Note that the FCB does not contain new information, and the direc-
 tory update step is bypassed if only read or update operations have been made to the
 referenced FCB.

3-22

BDOS Function Calls CP/M 3 Programmers Guide

 Upon return, the close function returns a directory code in register A with the
 value 00H if the close was successful,, or FFH, 255 Decimal, if the file was not found.
 Register H is set to zero in both of these cases. If a physical or extended error is
 encountered, the close function performs different actions depending on the BDOS
 error mode (see Function 45). If the BDOS error mode is in the default mode, a
 message identifying the error is displayed at the console, and the calling program is
 terminated. Otherwise, the close function returns to the calling program with register
 A set to OFFH and register H set to one of the following physical error codes:
 01 Disk I/O error
 02 Read/only disk
 04 Invalid drive error

3-23

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 17: SEARCH FOR FIRST
 Entry Parameters:
 Registers C: 11H
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Physical Error

 The Search For First function scans the directory for a match with the FCB addressed
 by register pair DE. Two types of searches can be performed. For standard searches,
 the calling program initializes bytes 0 through 12 of the referenced FCB, with byte 0
 specifying the drive directory to be searched, bytes 1 through 11 specifying the file or
 files to be searched for,, and byte 12 specifying the extent. Usually byte 12 is set to
 zero. An ASCII question mark, 63 decimal, 3F hex, in any of the bytes 1 through 12
 matches all entries on the directory in the corresponding position. This facility, called
 ambiguous reference, can be used to search for multiple files on the directory. When
 called in the standard mode, the Search function scans for the first file entry in the
 specified directory that matches the FCB, and belongs to the current user number.
 The Search For First function also initializes the Search For Next function. After
 the Search function has located the first directory entry matching the referenced FCB,
 the Search For Next function can be called repeatedly to locate all remaining match-
 ing entries. In terms of execution sequence, however, the Search For Next call must
 either follow a Search For First or Search For Next call with no other intervening
 BDOS disk-related function calls.
 If byte 0 of the referenced FCB is set to a question mark, the Search function
 ignores the remainder of the referenced FCB, and locates the first directory entry
 residing on the current default drive. All remaining directory entries can be located
 by making multiple Search For Next calls. This type of search operation is not
 usually made by application programs, but it does provide complete flexibility to
 scan all current directory values. Note that this type of search operation must be
 performed to access a drive's directory label (see Section 2.3.6).

3-24

BDOS Function Calls CP/M 3 Programmers Guide

 Upon return, the Search function returns a Directory Code in register A with the
 value 0 to 3 if the search is successful, or OFFH, 255 Decimal, if a matching directory
 entry is not found. Register H is set to zero in both of these cases. For successful
 searches, the current DMA is also filled with the directory record containing the
 matching entry, and the relative starting position is A * 32 (that is, rotate the A
 register left 5 bits, or ADD A five times). Although it is not usually required for
 application programs, the directory information can be extracted from the buffer at
 this position.
 If the directory has been initialized for date and time stamping by INITDIR, then
 an SFCB resides in every fourth directory entry, and successful Directory Codes are
 restricted to the values 0 to 2. For successful searches, if the matching directory
 record is an extent zero entry, and if an SFCB resides at offset 96 within the current
 DMA, contents of (DMA Address + 96) = 21H, the SFCB contains the date and
 time stamp information, and password mode for the file. This information is located
 at the relative starting position of 97 + (A * 10) within the current DMA in the
 following format:
 0 - 3 Create or Access Date and Time Stamp Field
 4 - 7 Update Date and Time Stamp Field
 8 : Password Mode Field
 (Refer to Section 2.3.8 for more information on SFCBS.)
 If a physical error is encountered, the Search function performs different actions
 depending on the BDOS error mode (see Function 45). If the BDOS error mode is in
 the default mode, a message identifying the error is displayed at the console, and the
 calling program is terminated. Otherwise, the Search function returns to the calling
 program with register A set to OFFH, and register H set to one of the following
 physical error codes:
 01 Disk I/O error
 04 Invalid drive error

3-25

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 18: SEARCH FOR NEXT

 Entry Parameters:
 Register C: 12H
 Returned Value:
 Registers A: Directory Code
 H: Physical Error

 The Search For Next function is identical to the Search For First function, except
 that the directory scan continues from the last entry that was matched. Function 18
 returns a Directory code in register A, analogous to Function 17.
 Note: in execution sequence, a Function 18 call must follow either a Function 17 or
 another Function 18 call with no other intervening BDOS disk-related function calls.

3-26

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 19: DELETE FILE
 Entry Parameters:
 Registers C: 13H
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Extended or Physical Error

 The Delete File function removes files or XFCBs that match the FCB addressed in
 register pair DE. The filename and filetype can contain ambiguous references, that is,
 question marks 'in bytes fl through t3, but the dr byte cannot be ambiguous, as it
 can in the Search and Search Next functions. Interface attribute f5' specifies the type
 of delete operation that is performed.
 f5' = 0 - Standard Delete (default mode)
 f5' = 1 - Delete only XFCBs
 If any of the files that the referenced FCB specify are password protected, the correct
 password must be placed in the first eight bytes of the current DMA buffer, or have
 been previously established as the default password (see Function 106).
 For standard delete operations, the Delete function removes all directory entries
 belonging to files that match the referenced FCB. All disk directory and data space
 owned by the deleted files is returned to free space, and becomes available for allo-
 cation to other files. Directory XFCBs that were owned by the deleted files are also
 removed from the directory. If interface attribute f5' of the FCB is set to 1, Function
 19 deletes only the directory XFCBs that match the referenced FCB.
 Note: if any of the files that match the input FCB specification fall the password
 check, or are Read-Only, then the Delete function does not delete any files or XFCBS.
 This applies to both types of delete operations.

3-27

BDOS Function Calls CP/M 3 Programmers Guide

 In nonbanked systems, file passwords and XFCBs are not supported. Thus, if the
 Delete function is called with interface attribute f5' set to true, the Delete function
 performs no action but returns with register A set to zero.
 Upon return, the Delete function returns a Directory Code in register A with the
 value 0 if the delete is successful, or OFFH, 255 Decimal, if no file that matches the
 referenced FCB is found. Register H is set to zero in both of these cases. If a physical,
 or extended error is encountered, the Delete function performs different actions
 depending on the BDOS error mode (see Function 45). If the BDOS error mode is
 the default mode, a message identifying the error is displayed at the console and the
 calling program is terminated. Otherwise, the Delete function returns to the calling
 program with register A set to OFFH and register H set to one of the following
 physical or extended error codes:
 01 : Disk I/O error
 02 : Read-Only disk
 03 : Read-Only file
 04 : Invalid drive error
 07 : File password error

3-28

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 20: READ SEQUENTIAL
 Entry Parameters:
 Registers C: 14H
 DE: FCB Address
 Returned Value:
 Registers A: Error Code
 H: Physical Error

 The Read Sequential function reads the next 1 to 128 128-byte records from a file
 into memory beginning at the current DMA address. The BDOS Multi-Sector Count
 (see Function 44) determines the number of records to be read. The default is one
 record. The FCB addressed by register pair DE must have been previously activated
 by an Open or Make function call.
 Function 20 reads each record from byte cr of the extent, then automatically
 increments the cr field to the next record position. If the cr field overflows, then the
 function automatically opens the next logical extent and resets the cr field to 0 in
 preparation for the next read operation. The calling program must set the cr field to
 0 following the Open call if the intent is to read sequentially from the beginning of
 the file.
 Upon return, the Read Sequential function sets register A to zero if the read oper-
 ation is successful. Otherwise, register A contains an error code identifying the error
 as shown below:
 01 Reading unwritten data (end-of-file)
 09 Invalid FCB
 10 Media change occurred
 255 Physical Error; refer to register H

3-29

BDOS Function Calls CP/M 3 Programmers Guide

 Error Code 01 is returned if no data exists at the next record position of the file.
 Usually, the no data situation is encountered at the end of a file. However, it can
 also occur if an attempt is made to read a data block that has not been previously
 written, or an extent which has not been created. These situations are usually restricted
 to files created or appended with the BDOS random write functions (see Functions
 34 and 40).
 Error Code 09 is returned if the FCB is invalidated by a previous BDOS close call that
 returns an error.
 Error Code 10 is returned if a media change occurs on the drive after the refer-
 enced FCB is activated by a BDOS Open, or Make Call.
 Error Code 255 is returned if a physical error is encountered and the BDOS error
 mode is Return Error mode, or Return and Display Error mode (see Function 45). If
 the error mode is the default mode, a message identifying the physical error is dis-
 played at the console, and the calling program is terminated. When a physical error
 is returned to the calling program, register H contains one of the following error
 codes:
 01 Disk I/O error
 04 Invalid drive error
 On all error returns except for physical error returns, A = 255, Function 20 sets
 register H to the number of records successfully read before the error is encountered.
 This value can range from 0 to 127 depending on the current BDOS Multi-Sector
 Count. It is always set to zero when the Multi-Sector Count is equal to one.

3-30

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 21: WRITE SEQUENTIAL
 Entry Parameters:
 Registers C: 15H
 DE: FCB Address
 Returned Value:
 Registers A: Error Code
 H: Physical Error

 The Write Sequential function writes 1 to 128 128-byte data records, beginning at
 the current DMA address into the file named by the FCB addressed in register pair
 DE. The BDOS Multi-Sector Count (see Function 44) determines the number of 128
 byte records that are written. The default is one record. The referenced FCB must
 have been previously activated by a BDOS Open or Make function call.
 Function 21 places the record into the file at the position indicated by the cr byte
 of the FCB, and then automatically increments the cr byte to the next record posi-
 tion. If the cr field overflows, the function automatically opens, or creates the next
 logical extent, and resets the cr field to 0 in preparation for the next write operation.
 If Function 21 is used to write to an existing file, then the newly written records
 overlay those already existing in the file. The calling program must set the cr field to
 0 following an Open or Make call if the intent is to write sequentially from the
 beginning of the file.
 Function 21 makes an Update date and time for the file if the following conditions
 are satisfied: the referenced drive has a directory label that requests date and time
 stamping, and the file has not already been stamped for update by a previous Make
 or Write function call.

3-31

BDOS Function Calls CP/M 3 Programmers Guide

 Upon return, the Write Sequential function sets register A to zero if the write
 operation is successful. Otherwise, register A contains an error code identifying the
 error as shown below:
 01 No available directory space
 02 No available data block
 09 Invalid FCB
 10 Media change occurred
 2S5 Physical Error : refer to register H
 Error Code 01 is returned when the write function attempts to create a new extent
 that requires a new directory entry, and no available directory entries exist on the
 selected disk drive.
 Error Code 02 is returned when the write command attempts to allocate a new
 data block to the file, and no unallocated data blocks exist on the selected disk drive.
 Error Code 09 is returned if the FCB is invalidated by a previous BDOS close call
 that returns an error.
 Error Code 10 is returned if a media change occurs on the drive after the refer-
 enced FCB is activated by a BDOS Open or Make call.

3-32

BDOS Function Calls CP/M 3 Programmers Guide

 Error Code 255 is returned if a physical error is encountered and the BDOS error
 mode is Return Error mode, or Return and Display Error mode (see Function 45). If
 the error mode is the default mode, a message identifying the physical error is dis-
 played at the console, and the calling program is terminated. When a physical error
 is returned to the calling program, register H contains one of the following error
 codes:
 01 Disk I/O error
 02 Read-Only disk
 03 Read-Only file or
 File open from user 0 when
 the current user number is non-zero or
 File password protected in Write mode
 04 Invalid drive error
 On all error returns, except for physical error returns, A = 255, Function 21 sets
 register H to the number of records successfully written before the error was encoun-
 tered. This value can range from 0 to 127 depending on the current BDOS Multi-
 Sector Count. It is always set to zero when the Multi-Sector Count is set to one.

3-33

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 22: MAKE FILE
 Entry Parameters:
 Registers C: 16H
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Physical or Extended Error

 The Make File function creates a new directory entry for a file under the current
 user number. It also creates an XFCB for the file if the referenced drive has a direc-
 tory label that enables password protection on the drive, and the calling program
 assigns a password to the file.
 The calling program passes the address of the FCB in register pair DE, with byte 0
 of the FCB specifying the drive, bytes 1 through 11 specifying the filename and
 filctype, and byte 12 set to the extent number. Usually, byte 12 is set to zero. Byte
 32 of the FCB, the cr field, must be initialized to zero, before or after the Make call,
 if the intent is to write sequentially from the beginning of the file.
 Interface attribute f6' specifies whether a password is to be assigned to the created
 file.
 f6' = 0 - Do not assign password (default)
 f6' = 1 - Assign password to created file
 When attribute f6' is set to 1, the calling program must place the password in the
 first 8 bytes of the current DMA buffer, and set byte 9 of the DMA buffer to the
 password mode (see Function 102). Note that the Make function only interrogates
 interface attribute f6' if passwords are activated on the referenced drive. In non-
 banked systems, file passwords are not supported, and attribute f6' is never interrogated.
 The Make function returns with an error if the referenced FCB names a file that
 currently exists in the directory under the current user number.

3-34

BDOS Function Calls CP/M 3 Programmers Guide

 If the Make function is successful, it activates the referenced FCB for file opera-
 tions by opening the FCB, and initializes both the directory entry and the referenced
 FCB to an empty file. It also initializes all file attributes to zero. In addition, Function
 22 makes a Creation date and time stamp for the file if the following conditions are
 satisfied: the referenced drive has a directory label that requests Creation date and
 time stamping and the FCB extent number field is equal to zero. Function 22 also
 makes an Update stamp if the directory label requests update stamping and the FCB
 extent field is equal to zero.
 If the referenced drive contains a directory label that enables password protection,
 and if interface attribute f6' has been set to 1, the Make function creates an XFCB
 for the file. In addition, Function 22 also assigns the password, and password mode
 placed in the first nine bytes of the DMA, to the XFCB.
 Upon return, the Make function returns a directory code in register A with the
 value 0 if the make operation is successful, or OFFH, 25S decimal, if no directory
 space is available. Register H is set to zero in both of these cases. If a physical or
 extended error is encountered, the Make function performs different actions depend-
 ing on the BDOS error mode (see Function 45). If the BDOS error mode is the
 default mode, a message identifying the error is displayed at the console, and the
 calling program is terminated. Otherwise, the Make function returns to the calling
 program with register A set to OFFH, and register H set to one of the following
 physical or extended error codes:
 01 : Disk I/O error
 02 : Read-Only disk
 04 : Invalid drive error
 08 : File already exists
 09 : ? in filename or filetype field

3-35

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 23: RENAME FILE
 Entry Parameters:
 Registers C: 17H
 DE: FCB Address
 Returned Value-.
 Registers A: Directory Code
 H: Physical or Extended Error

 The Rename function uses the FCB, addressed by register pair DE, to change all
 directory entries of the file specified by the filename in the first 16 bytes of the FCB
 to the filename in the second 16 bytes. If the file specified by the first filename is
 password protected, the correct password must be placed in the first eight bytes of
 the current DMA buffer, or have been previously established as the default password
 (see Function 106). The calling program must also ensure that the filenames specified
 in the FCB are valid and unambiguous, and that the new filename does not already
 exist on the drive. Function 23 uses the dr code at byte 0 of the FCB to select the
 drive. The drive code at byte 16 of the FCB is ignored.

3-36

BDOS Function Calls CP/M 3 Programmers Guide

 CP/M 3 Programmer's Guide 3 BDOS Calls: Function 23
 Upon return, the Rename function returns a Directory Code in register A with the
 value 0 if the rename is successful, or 0FFH, 255 Decimal, if the file named by the
 first filename in the FCB is not found. Register H is set to zero in both of these cases.
 If a physical or extended error is encountered, the Rename function performs differ-
 ent actions depending on the BDOS error mode (see Function 45). If the BDOS error
 mode is the default mode, a message identifying the error is displayed at the console
 and the program is terminated. Otherwise, the Rename function returns to the calling
 program with register A set to 0FFH and register H set to one of the following
 physical or extended error codes:
 01 Disk I/O error
 02 Read-Only disk
 03 Read-Only file
 04 Invalid drive error
 07 File password error
 08 File already exists
 09 ? in filename or filetype field

3-37

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 24: RETURN LOGIN VECTOR
 Entry Parameters:
 Register C: 18H
 Returned Value:
 Register HL: Login Vector

 Function 24 returns the login vector in register pair HL. The login vector is a 16-
 bit value with the least significant bit of L corresponding to drive A, and the high-
 order bit of H corresponding to the 16th drive, labelled P. A 0 bit indicates that the
 drive is not on-line, while a 1 bit indicates the drive is active. A drive is made active
 by either an explicit BDOS Select Disk call, number 14, or an implicit selection when
 a BDOS file operation specifies a non-zero dr byte in the FCB. Function 24 maintains
 compatibilty with earlier releases since registers A and L contain the same values
 upon return.

3-38

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 25: RETURN CURRENT DISK
 Entry Parameters:
 Register C: 19H
 Returned Value:
 Register A: Current Disk

 Function 25 returns the currently selected default disk number in register A. The
 disk numbers range from 0 through 15 corresponding to drives A through P.

3-39

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 26: SET DMA ADDRESS
 Entry Parameters:
 Registers C: 1AH
 DE: DMA Address

 DMA is an acronym for Direct Memory Address, which is often used in connec-
 tion with disk controllers that directly access the memory of the computer to transfer
 data to and from the disk subsystem. Under CP/M 3, the current DMA is usually
 defined as the buffer in memory where a record resides before a disk write, and after
 a disk read operation. If the BDOS Multi-Sector Count is equal to one (see Function
 44), the size of the buffer is 128 bytes. However, if the BDOS Multi-Sector Count is
 greater than one, the size of the buffer must equal N * 128, where N equals the
 Multi-Sector Count.
 Some BDOS functions also use the current DMA to pass parameters, and to return
 values. For example, BDOS functions that check and assign file passwords require
 that the password be placed in the current DMA. As another example, Function 46,
 Get Disk Free Space, returns its results in the first 3 bytes of the current DMA. When
 the current DMA is used in this context, the size of the buffer in memory is deter-
 mined by the specific requirements of the called function.
 When a transient program is initiated by the CCP, its DMA address is set to
 0080H. The BDOS Reset Disk System function, Function 13, also sets the DMA
 address to 0080H. The Set DMA function can change this default value to another
 memory address. The DMA address is set to the value passed in the register pair DE.
 The DMA address remains at this value until it is changed by another Set DMA
 Address, or Reset Disk System call.

3-40

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 27: GET ADDR(ALLOC)
 Entry Parameters:
 Register C: 1BH
 Returned Value:
 Register HL: ALLOC Address

 CP/M 3 maintains an allocation vector in main memory for each active disk drive.
 Some programs use the information provided by the allocation vector to determine
 the amount of free data space on a drive. Note, however, that the allocation infor-
 mation might be inaccurate if the drive has been marked Read-Only.
 Function 27 returns in register pair HL, the base address of the allocation vector
 for the currently selected drive. If a physical error is encountered when the BDOS
 error mode is one of the return modes (see Function 4S), Function 27 returns the
 value OFFFFH in the register pair HL.
 In banked CP/M 3 systems, the allocation vector can be placed in bank zero. In
 this case, a transient program cannot access the allocation vector. However, the
 BDOS function, Get Disk Free Space (Function 46), can be used to directly return
 the number of free 128-byte records on a drive. The CP/M 3 utilities that display a
 drive's free space, DIR and SHOW, use Function 46 for that purpose.

3-41

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 28: WRITE PROTECT DISK

 Entry Parameters:
 Register C: 1CH

 The Write Protect Disk function provides temporary write protection for the cur-
 rently selected disk by marking the drive as Read-Only, No program can write to a
 disk that is in the Read-Only state. A drive reset operation must be performed for a
 Read-Only drive to restore it to the Read-Write state (see Functions 13 and 37).

3-42

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 29: GET READ-ONLY VECTOR
 Entry Parameters:
 Register C: lDH
 Returned Value:
 Register HL: R/O Vector Value

 Function 29 returns a bit vector in register pair HL that indicates which drives
 have the temporary Read-Only bit set. The Read-Only bit can be set only by a BDOS
 Write Protect Disk call.
 The format of the bit vector is analogous to that of the login vector returned by
 Function 24. The least significant bit corresponds to drive A, while the most signifi-
 cant bit corresponds to drive P.

3-43

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 30: SET FILE ATTRIBUTES

 Entry Parameters:
 Registers C: 1EH
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Physical or Extended error

 By calling the Set File Attributes function, a program can modify a file's attributes
 and set its last record byte count. Other BDOS functions can be called to interrogate
 these file parameters, but only Function 30 can change them. The file attributes that
 can be set or reset by Function 30 are fl' through f4', Read-Only, tl', System, t2',
 and Archive, t3'. The register pair DE addresses an FCB containing a filename with
 the appropriate attributes set or reset. The calling program must ensure that it does
 not specify an ambiguous filename. In addition, if the specified file is password to-
 tected, the correct password must be placed in the first eight bytes of the current
 DMA buffer or have been previously established as the default password (see Func-
 tion 106).
 Interface attribute f6' specifies whether the last record byte count of the specified
 file is to be set:
 f6' = 0 - Do not set byte count (default mode)
 f6' = 1 - Set byte count
 If interface attribute f6' is set, the calling program must set the cr field of the refer-
 enced FCB to the byte count value. A program can access a file's byte count value
 with the BDOS Open, Search, or Search Next functions.
 Function 30 searches the referenced directory for entries belonging to the current
 user number that matches the FCB specified name and type fields. The function then
 updates the directory to contain the selected indicators, and if interface attribute f6'
 is set, the specified byte count value. Note that the last record byte count is main-
 tained in byte 13 of a file's directory FCBS.

3-44

BDOS Function Calls CP/M 3 Programmers Guide

 File attributes tl', t2', and t3' are defined by CP/M 3. (They are described in
 Section 2.3.4.) Attributes fl' through f4' are not presently used, but can be useful for
 application programs, because they are not involved in the matching program used
 by the BDOS during Open File and Close File operations. Indicators f5' through f8'
 are reserved for use as interface attributes.
 Upon return, Function 30 returns a Directory Code in register A with the value 0
 if the function is successful, or OFFH, 255 Decimal, if the file specified by the refer-
 enced FCB is not found. Register H is set to zero in both of these cases. If a physical
 or extended error is encountered', the Set File Attributes function performs different
 actions depending on the BDOS error mode (see Function 45). If the BDOS error
 mode is the default mode, a message identifying the error is displayed at the console,
 and the program is terminated. Otherwise, Function 30 returns to the calling pro-
 gram with reg'ls-Ler A set to OFFH, and register H set to one of the following physical
 or extended error codes:
 01 Disk I/O error
 02 Read-Only disk
 04 Select error
 07 File password error
 09 ? in filename or filetype field

3-45

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 31: GET ADDR(DPB PARMS)
 Entry Parameters:
 Register C: 1FH
 Returned Value:
 Register HL: DPB Address

 Function 31 returns in register pair HL the address of the BIOS-resident Disk
 Parameter Block, DPB, for the currently selected drive. (Refer to the CP/M Plus
 (CP/M Version 3) Operating System System Guide for the format of the DPB). The
 calling program can use this address to extract the disk parameter values.
 If a physical error is encountered when the BDOS error mode is one of the return
 modes (see Function 45), Function 31 returns the value OFFFFH in the register pair
 HL.

3-46

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 32: SET/GET USER CODE
 Entry Parameters:
 Registers C: 20H
 Returned Value: E: OFFH (get) or User Code (set)
 Register A: Current Code or
 (no value)

 A program can change, or interrogate the currently active user number by calling
 Function 32. If register E = OFFH, then the value of the current user number is
 returned in register A, where the value is in the range of 0 to 15. If register E is not
 OFFH, then the current user number is changed to the value of E, modulo 16.

3-47

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 33: READ RANDOM
 Entry Parameters:
 Registers C: 21H
 DE: FCB Address
 Returned Value:
 Registers A: Error Code
 H: Physical Error

 The Read Random function is similar to the Read Sequential function except that
 the read operation takes place at a particular random record number, selected by the
 24-bit value constructed from the three byte, rO, rl, r2, field beginning at position
 33 of the FCB. Note that the sequence of 24 bits is stored with the least significant
 byte first, rO, the middle byte next, rl, and the high byte last, r2. The random record
 number can range from 0 to 262,143. This corresponds to a maximum value of 3 in
 byte r2.
 To read a file with Function 33, the calling program must first open the base
 extent, extent 0. This ensures that the FCB is properly initialized for subsequent
 random access operations. The base extent may or may not contain any allocated
 data. Function 33 reads the record specified by the random record field into the
 current DMA address. The function automatically sets the logical extent and current
 record values, but unlike the Read Sequential function, it does not advance the
 current record number. Thus, a subsequent Read Random call rereads the same
 record. After a random read operation, a file can be accessed sequentially, starting
 from the current randomly accessed position. However, the last randomly accessed
 record is reread or rewritten when switching from random to sequential mode.
 If the BDOS Multi-Sector Count is greater than one (see Function 44), the Read
 Random function reads multiple consecutive records into memory beginning at the
 current DMA. The rO, rl, and r2 field of the FCB is automatically incremented to
 read each record. However, the FCBs random record number is restored to the first
 record's value upon return to the calling program.

3-48

BDOS Function Calls CP/M 3 Programmers Guide

 Upon return, the Read Random function sets register A to zero if the read opera-
 tion was successful. Otherwise, register A contains one of the following error codes:
 01 Reading unwritten data (end-of-file)
 03 Cannot close current extent
 04 Seek to unwritten extent
 06 Random record number out of range
 10 Media change occurred
 255 Physical Error : refer to register H
 Error Code 01 is returned if no data exists at the next record position of the file.
 Usually, the no data situation is encountered at the end of a file. However, it can
 also occur if an attempt is made to read a data block that has not been previously
 written.
 Error Code 03 is returned when the Read Random function cannot close the
 current extent prior to moving to a new extent.
 Error Code 04 is returned when a read random operation accesses an extent that
 has not been created.
 Error Code 06 is returned when byte 35, r2, of the referenced FCB is greater than
 3.
 Error Code 10 is returned if a media change occurs on the drive after the refer-
 enced FCB is activated by a BDOS Open or Make Call.
 Error Code 255 is returned if a physical error is encountered, and the BDOS error
 mode is one of the return modes (see Function 45). If the error mode is the default
 mode, a message identifying the physical error is displayed at the console, and the
 calling program is terminated. When a physical error is returned to the calling pro-
 gram, register H contains one of the following error codes:
 01 Disk I/O error
 04 Invalid drive error
 On all error returns except for physical errors, A = 255, the Read Random
 function sets register H to the number of records successfully read before the error is
 encountered. This value can range from 0 to 127 depending on the current BDOS
 Multi-Sector Count. It is always set to zero when the Multi-Sector Count is equal to
 one.

3-49

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 34: WRITE RANDOM
 Entry Parameters:
 Registers C: 22H
 DE: FCB Address
 Returned Value:
 Registers A: Error Code
 H: Physical Error

 The Write Random function is analogous to the Read Random function, except
 that data is written to the disk from the current DMA address. If the disk extent or
 data block where the data is to be written is not already allocated, the BDOS auto-
 matically performs the allocation before the write operation continues.
 To write to a file using the Write Random function, the calling program must first
 open the base extent, extent 0. This ensures that the FCB is properly initialized for
 subsequent random access operations. If the file is empty, the calling program must
 create the base extent with the Make File function before calling Function 34. The
 base extent might or might not contain any allocated data, but it does record the file
 in the directory, so that the file can be displayed by the DIR utility.
 The Write Random function sets the logical extent and current record positions to
 correspond with the random record being written, but does not change the random
 record number. Thus, sequential read or write operations can follow a random write,
 with the current record being reread or rewritten as the calling program switches
 from random to sequential mode.
 Function 34 makes an Update date and time stamp for the file if the following
 conditions are satisfied: the referenced drive has a directory label that requests Update
 date and time stamping if the file has not already been stamped for update by a
 previous BDOS Make or Write call.

3-50

BDOS Function Calls CP/M 3 Programmers Guide

 If the BDOS Multi-Sector Count is greater than one (see Function 44), the Write
 Random function reads multiple consecutive records into memory beginning at the
 current DMA. The rO, rl, and r2 field of the FCB is automatically incremented to
 write each record. However, the FCB's random record number is restored to the first
 record's value when it returns to the calling program. Upon return, the Write Ran-
 dom function sets register A to zero if the write operation is successful. Otherwise,
 register A contains one of the following error codes:
 02 No available data block
 03 Cannot Close current extent
 05 No available directory space
 06 Random record number out of range
 10 Media change occurred
 255 Physical Error : refer to register H
 Error Code 02 is returned when the write command attempts to allocate a new
 data block to the file and no unallocated data blocks exist on the selected disk drive.
 Error Code 03 is returned when the Write Random function cannot close the
 current extent prior to moving to a new extent.
 Error Code 05 is returned when the write function attempts to create a new extent
 that requires a new directory entry and no available directory entries exist on the
 selected disk drive.
 Error Code 06 is returned when byte 35, r2, of the referenced FCB is greater than
 3.
 Error Code 10 is returned if a media change occurs on the drive after the refer-
 enced FCB is activated by a BDOS Open or Make Call.

3-51

BDOS Function Calls CP/M 3 Programmers Guide

 Error Code 255 is returned if a physical error is encountered and the BDOS error
 mode is one of the return modes (see Function 45). If the error mode is the default
 mode, a message identifying the physical error is displayed at the console, and the
 calling program is terminated. When a physical error is returned to the calling pro-
 gram, it is identified by register H as shown below:

 01 Disk I/O error
 02 Read-Only disk
 03 Read-Only file or
 File open from user 0 when the current user number is nonzero or
 File password protected in Write mode
 04 Invalid drive error
 On all error returns, except for physical errors, A = 255, the Write Random
 function sets register H to the number of records successfully written before the error
 is encountered. This value can range from 0 to 127 depending on the current BDOS
 Multi-Sector Count. It is always set to zero when the Multi-Sector Count is equal to
 one.

3-52

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 35: COMPUTE FILE SIZE
 Entry Parameters:
 Registers C: 23H
 DE: FCB Address
 Returned Value:
 Registers A: Error Flag
 H: Physical or Extended error
 Random Record Field Set

 The Compute File Size function determines the virtual file size, which is, in effect,
 the address of the record immediately following the end of the file. The virtual size
 of a file corresponds to the physical size if the file is written sequentially. If the file is
 written in random mode, gaps might exist in the allocation, and the file might con-
 tain fewer records than the indicated size. For example, if a single record with record
 number 262,143, the CP/M 3 maximum is written to a file using the Write Random
 function, then the virtual size of the file is 262,144 records even though only 1 data
 block 'is actually allocated.
 To compute file size, the calling program passes in register pair DE the address of
 an FCB in random mode format, bytes rO, rl and r2 present. Note that the FCB
 must contain an unambiguous filename and filetype. Function 35 sets the random
 record field of the FCB to the random record number + 1 of the last record in the
 file. If the r2 byte is set to 04, then the file contains the maximum record count
 262,144.
 A program can append data to the end of an existing file by calling Function 35 to
 set the random record position to the end of file, and then performing a sequence of
 random writes starting at the preset record address.
 Note: the BDOS does not require that the file be open to use Function 35. However,
 if the file has been written to, it must be closed before calling Function 35. Other-
 wise, an incorrect file size might be returned.

3-53

BDOS Function Calls CP/M 3 Programmers Guide

 Upon return, Function 35 returns a zero in register A if the file specified by the
 referenced FCB is found, or an OFFH in register A if the file is not found. Register H
 is set to zero in both of these cases. If a physical error is encountered, Function 35
 performs different actions depending on the BDOS error mode (see Function 45).
 If the BDOS error mode is the default mode, a message identifying the error is
 displayed at the console and the program is terminated. Otherwise, Function 35
 returns to the calling program with register A set to OFFH, and register H set to one
 of the following physical errors:
 01 Disk I/O error
 04 Invalid drive error

3-54

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 36: SET RANDOM RECORD
 Entry Parameters:
 Registers C: 24H
 DE: FCB Address
 Returned Value: Random Record Field Set

 The Set Random Record function returns the random record number of the next
 record to be accessed from a file that has been read or written sequentially to a
 particular point. This value is returned in the random record field, bytes rO, rl, and
 r2, of the FCB addressed by the register pair DE. Function 36 can be useful in two
 ways,
 First, it is often necessary to initially read and scan a sequential file to extract the
 positions of various key fields. As each key is encountered, Function 36 is called to
 compute the random record position for the data corresponding to this key. If the
 data unit size is 128 bytes, the resulting record number minus one is placed into a
 table with the key for later retrieval. After scanning the entire file and tabularizing
 the keys and their record numbers, you can move directly to a particular record by
 performing a random read using the corresponding random record number that you
 saved earlier. The scheme is easily generalized when variable record lengths are involved,
 because the program need only store the buffer-relative byte position along with the
 key and record number to find the exact starting position of the keyed data at a later
 time.
 A second use of Function 36 occurs when switching from a sequential read or
 write over to random read or write. A file is sequentially accessed to a particular
 point in the file, then Function 36 is called to set the record number, and subsequent
 random read and write operations continue from the next record in the file.

3-55

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 37: RESET DRIVE
 Entry Parameters:
 Registers C: 25H
 DE: Drive Vector
 Returned Value:
 Register A: 00H

 The Reset Drive function programmatically restores specified drives to the reset
 state. A reset drive is not logged-in and is in Read-Write status. The passed parame-
 ter in register pair DE is a 16-bit vector of drives to be reset, where the least signifi-
 cant bit corresponds to the first drive A, and the high-order bit corresponds to the
 sixteenth drive, labelled P. Bit values of 1 indicate that the specified drive is to be
 reset.

3-56

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 38: ACCESS DRIVE
 Entry Parameters:
 Register C: 26H

 This is an MP/M function that is not supported under CP/M 3. If called, the file
 system returns a zero In register A indicating that the access request is successful.

3-57

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 39: FREE DRIVE
 Entry Parameters:
 Register C: 27H

 This is an MP/M function that is not supported under CP/M 3. If called, the file
 system returns a zero In register A indicating that the free request is successful.

3-58

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 40: WRITE RANDOM WITH
 ZERO FILL
 Entry Parameters:
 Registers C: 28H
 DE: FCB address
 Returned Value:
 Registers A: Error Code
 H: Physical Error

 The Write Random With Zero Fill function is identical to the Write Random
 function (Function 34) with the exception that a previously unallocated data block is
 filled with zeros before the record is written. If this function has been used to create
 a file, records accessed by a read random operation that contain all zeros identify
 unwritten random record numbers. Unwritten random records in allocated data blocks
 of files created using the Write Random function (Function 34) contain uninitialized
 data.

3-59

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 41: TEST AND WRITE RECORD
 Entry Parameters:
 Registers C: 29H
 DE: FCB Address
 Returned Value:
 Registers A: Error Code
 H: Physical Error

 The Test and Write Record function is an MP/M 11" function that is not sup-
 ported under CP/M 3. If called, Function 41 returns with register A set to OFFH and
 register H set to zero.

3-60

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 42: LOCK RECORD
 Entry Parameters:
 Registers C: 2AH
 DE: FCB Address
 Returned Value:
 Register A: 00H

 The Lock Record function is an MP/M II function that is supported under CP/M 3
 only to provide compatibility between CP/M 3 and MP/M. It is intended for use in
 situations where more than one running program has Read-Write access to a com-
 mon file. Because CP/M 3 is a single-user operating system in which only one pro-
 gram can run at a time, this situation cannot occur. Thus, under CP/M 3, Function
 42 performs no action except to return the value 00H in register A indicating that
 the record lock operation is successful.

3-61

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 43: UNLOCK RECORD
 Entry Parameters:
 Registers C: 2BH
 DE: FCB Address
 Returned Value:
 Register A: 00H

 The Unlock Record function is an MP/M II function that is supported under
 CP/M 3 only to provide compatibility between CP/M 3 and MP/M. It is intended for
 use in situations where more than one running program has Read-Write access to a
 common file. Because CP/M 3 is a single-user operating system in which only one
 program can run at a time, this situation cannot occur. Thus, under CP/M 3, Func-
 tion 43 performs no action except to return the value 00H in register A indicating
 that the record unlock operation is successful.

3-62

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 44: SET MULTI-SECTOR COUNT
 Entry Parameters:
 Registers C: 2CH
 E: Number of Sectors
 Returned Value:
 Register A: Return Code

 The Set Multi-Sector Count function provides logical record blocking under
 CP/M 3. It enables a program to read and write from 1 to 128 records of 128 bytes
 at a time during subsequent BDOS Read and Write functions.
 Function 44 sets the Multi-Sector Count value for the calling program to the value
 passed in register E. Once set, the specified Multi-Sector Count remains in effect until
 the calling program makes another Set Multi-Sector Count function call and changes
 the value. Note that the CCP sets the Multi-Sector Count to one when it initiates a
 transient program.
 The Multi-Sector Count affects BDOS error reporting for the BDOS Read and
 Write functions. If an error interrupts these functions when the Multi-Sector is greater
 than one, they return the number of records successfully read or written in register
 H for all errors except for physical errors (A = 255).
 Upon return, register A is set to zero if the specified value is in the range of 1 to
 128. Otherwise, register A is set to 0FFH.

3-63

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 45: SET BDOS ERROR MODE
 Entry Parameters:
 Registers C: 2DH
 E: BDOS Error Mode
 Returned Value: None

 Function 45 sets the BDOS error mode for the calling program to the mode speci-
 fied in register E. If register E is set to OFFH, 255 decimal, the error mode is set to
 Return Error mode. If register E is set to OFEH, 254 decimal, the error mode is set
 to Return and Display mode. If register E is set to any other value, the error mode is
 set to the default mode.
 The SET BDOS Error Mode function determines how physical and extended errors
 (see Section 2.2.13) are handled for a program. The Error Mode can exist in three
 modes: the default mode, Return Error mode, and Return and Display Error mode.
 In the default mode, the BDOS displays a system message at the console that identi-
 fies the error and terminates the calling program. In the return modes, the BDOS sets
 register A to OFFH, 255 decimal, places an error code that identifies the physical or
 extended error in register H and returns to the calling program. In Return and
 Display mode, the BDOS displays the system message before returning to the calling
 program. No system messages are displayed, however, when the BDOS is in Return
 Error mode.

3-64

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 46: GET DISK FREE SPACE
 Entry Parameters:
 Registers C: 2EH
 E: Drive
 Returned Value: First 3 bytes
 of current DMA
 buffer
 Registers A: Error Flag
 H: Physical Error

 The Get Disk Free Space function determines the number of free sectors, 128 byte
 records, on the specified drive. The calling program passes the drive number in
 register E, with 0 for drive A, 1 for B, and so on, through 15 for drive P in a full 16-
 drive system. Function 46 returns a binary number in the first 3 bytes of the current
 DMA buffer. This number is returned in the following format:
 fso fsl fs2
 Disk Free Space Field Format
 fso = low byte
 fsl = middle byte
 fs2 = high byte
 Note that the returned free space value might be inaccurate if the drive has been
 marked Read-Only.

3-65

BDOS Function Calls CP/M 3 Programmers Guide

 Upon return, register A is set to zero if the function is successful. However, if the
 BDOS Error Mode is one of the return modes (see Function 45), and a physical error
 is encountered, register A is set to OFFH, 255 decimal, and register H is set to one of
 the following values:
 01 - Disk I/O error
 04 - Invalid drive error

3-66

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 47: CHAIN TO PROGRAM
 Entry Parameters:
 Registers C: 2FH
 E: Chain Flag

 The Chain To Program function provides a means of chaining from one program
 to the next without operator intervention. The calling program must place a com-
 mand line terminated by a null byte, OOH, in the default DMA buffer. If register E is
 set to 0FFH, the CCP initializes the default drive and user number to the current
 program values when it passes control to the specified transient program. Otherwise,
 these parameters are set to the default CCP values. Note that Function 108, Get/Set
 Program Return Code, can be used to pass a two byte value to the chained program.
 Function 47 does not return any values to the calling program and any encoun-
 tered errors are handled by the CCP.

3-67

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 48: FLUSH BUFFERS
 Entry Parameters:
 Registers C: 30H
 Returned Value: E: Purge Flag
 Registers A: Error Flag
 H: Physical Error

 The Flush Buffers function forces the write of any write-pending records contained
 in internal blocking/deblocking buffers. If register E is set to OFFH, this function also
 purges all active data buffers. Programs that provide write with read verify support
 need to purge internal buffers to ensure that verifying reads actually access the disk
 instead of returning data that is resident in internal data buffers. The CP/M 3 PIP
 utility is an example of such a program.
 Upon return, register A is set to zero if the flush operation is successful. If a
 physical error is encountered, the Flush Buffers function performs different actions
 depending on the BDOS error mode (see Function 45). If the BDOS error mode is in
 the default mode,, a message identifying the error is displayed at the console and the
 calling program is terminated. Otherwise, the Flush Buffers function returns to the
 calling program with register A set to OFFH and register H set to the following
 physical error code:
 0 1 Disk I/O error
 02 Read/only disk
 04 Invalid drive error

3-68

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 49: GET / SET SYSTEM
 CONTROLBLOCK
 Entry Parameters:
 Registers C: 31H
 DE: SCB PB Address
 Returned Value:
 Registers A: Returned Byte
 HL: Returned Word

 Function 49 allows access to parameters located in the CP/M 3 System Control
 Block (SCB). The SCB is a 100-byte data structure residing within the BDOS that
 contains flags and data used by the BDOS, CCP and other system components. Note
 that Function 49 is a CP/M 3 specific function. Programs intended for both MP/M 11
 and CP/M 3 should either avoid the use of this function or isolate calls to this
 function in CP/M 3 version-dependent sections.
 To use Function 49, the calling program passes the address of a data structure
 called the SCB parameter block in register pair DE. This data structure identifies the
 byte or word of the SCB to be updated or returned. The SCB parameter block is
 defined as:
 SCBPB: DB OFFSET ; Offset within SCB
 DB SET ; OFFH if settin!i a byte
 ; OFEH if setting a word
 ; 001H - OFDH are reserved
 ; OOOH if a get operation
 DW VALUE ; Byte or word value to be set
 The OFFSET parameter identifies the offset of the field within the SCB to be updated
 or accessed. The SET parameter determines whether Function 49 is to set a byte or
 word value in the SCB or if it is to return a byte from the SCB. The VALUE
 parameter is used only in set calls. In addition, only the first byte of VALUE is
 referenced in set byte calls.

3-69

BDOS Function Calls CP/M 3 Programmers Guide

 Use caution when you set SCB fields. Some of these parameters reflect the current
 state of the operating system. If they are set to invalid values, software errors can
 result. In general, do not use Function 49 to set a system parameter if another BDOS
 function can achieve the same result. For example, Function 49 can be called to
 update the Current DMA Address field within the SCB. This is not equivalent to
 making a Function 26, Set DMA Address call, and updating the SCB Current DMA
 field in this way would result in system errors. However, you can use Function 49 to
 return the Current DMA address. The System Control Block is summarized in the
 following table. Each of these fields is documented in detail in Appendix A.
 Table 3-4. System Control Block
 Offset -7 Description
 00 - 04 Reserved For System Use
 05 BDOS version number
 06 - 09 User Flags
 OA - OF Reserved For System Use
 10 - 11 Program Error return code
 12 - 19 Reserved For System Use
 1A Console Width (columns)
 1B Console Column Position
 1C Console Page Length
 1D - 21 Reserved For System Use
 22 - 23 CONIN Redirection flag
 24 - 25 CONOUT Redirection flag
 26 - 27 AUXIN Redirection flag
 28 - 29 AUXOUT Redirection flag
 2A - 2B LSTOUT Redirection flag
 2C Page Mode
 2D Reserved For System Use
 2E CTRL-H Active
 2F Rubout Active
 30 - 32 Reserved For System Use
 33 - 34 Console Mode
 35 - 36 Reserved For System Use
 37 Output Delimiter
 38 List Output Flag
 39 - 3B Reserved For System Use

3-70

BDOS Function Calls CP/M 3 Programmers Guide

 Table 3-4. (continued)
 Offset Description
 3C-3D Current DMA Address
 3E Current Disk
 3F - 43 Reserved For System Use
 44 Current User Number
 45 - 49 Reserved For System Use
 4A BDOS Multi-Sector Count
 4B BDOS Error Mode
 4C - 4F Drive Search Chain (DISKS A:,E:,F:)
 50 Temporary File Drive
 51 Error Disk
 52 - 56 Reserved For System Use
 57 BDOS flags
 58 - 5C Date Stamp
 5D - 5E Common Memory Base Address
 5F - 63 Reserved For System Use

 If Function 49 is called with the OFFSET parameter of the SCB parameter block
 greater than 63H, the function performs no action but returns with registers A and
 HL set to zero.

3-71

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 50: DIRECT BIOS CALLS
 Entry Parameters:
 Registers C: 32H
 DE: BIOS PB Address
 Returned Value: BIOS RETURN

 Function 50 provides a direct BIOS call through the BDOS to the BIOS. The
 calling program passes the address of a data structure called the BIOS Parameter
 Block (BIOSPB) in register pair DE. The BIOSPB contains the BIOS function number
 and register contents as shown below:
 BIOSPB: db FUNC ; BIOS function no.
 db AREG ; A register contents
 dw BCREG ; BC register contents
 dw DEREG ; DE register contents
 dw HLREG ; HL register contents
 System Reset (Function 0) is equivalent to Function 50 with a BIOS function
 number of 1.
 Note that the register pair BIOSPB fields (BCREG, DEREG, HLREG) arc defined
 in low byte, high byte order. For example, in the BCREG field, the first byte contains
 the C register value, the second byte contains the B register value.
 Under CP/M 3, direct BIOS calls via the BIOS jump vector are only supported for
 the BIOS Console I/O and List functions. You must use Function 50 to call any other
 BIOS functions. In addition, Function 50 intercepts BIOS Function 27 (Select Mem-
 ory) calls and returns with register A set to zero. Refer to the CPIM Plus (CP/M
 Version 3) Operating System System Guide for the definition of the BIOS functions
 and their register passing and return conventions.

3-72

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 59: LOAD OVERLAY
 Entry Parameters:
 Registers C: 3BH
 DE: FCB Address
 Returned Value:
 Registers A: Error Code
 H: Physical Error

 Only transient programs with an RSX header can use the Load Overlay function
 because BDOS Function 59 is supported by the LOADER module. The calling pro-
 gram must have a header to force the LOADER to remain resident after the program
 is loaded (see Section 1.3).
 Function 59 loads either an absolute or relocatable module. Relocatable modules
 are identified by a filetype of PRL. Function 59 does not call the loaded module.
 The referenced FCB must be successfully opened before Function 59 is called. The
 load address is specified in the first two random record bytes of the FCB, rO and rl.
 The LOADER returns an error if the load address is less than 100H, or if performing
 the requested load operation would overlay the LOADER, or any other Resident
 System Extensions that have been previously loaded.
 When loading relocatable files, the LOADER requires enough room at the load ad-
 dress for the complete PRL file including the header and bit map (see Appendix B).
 Otherwise an error is returned. Function 59 also returns an error on PRL file load
 requests if the specified load address is not on a page boundary.
 Upon return, Function 59 sets register A to zero if the load operation is successful.
 If the LOADER RSX is not resident in memory because the calling program did not
 have a RSX header, the BDOS returns with register A set to OFFH and register H set
 to zero. If the LOADER detects an invalid load address, or if insufficient memory is
 available to load the overlay, Function 59 returns with register A set to OFEH. All
 other error returns are consistent with the error codes returned by BDOS Function
 20, Read Sequential.

3-73

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 60: CALL RESIDENT SYSTEM
 EXTENSION
 Entry Parameters:
 Registers C: 3CH
 DE: RSX PB Address
 Returned Value:
 Registers A: Error Code
 H: Physical Error

 Function 60 is a special BDOS function that you use when you call Resident
 System Extensions. The RSX subfunction is specified in a structure called the RSX
 Parameter Block, defined as follows:
 RSXPB: db FUNC ; RSX Function number
 db NUMPARMS ; Number of word Parameters
 dw PARMETER1 ; Parameter I
 dw PARMETER2 ; Parameter 2
 . . .
 dw PARMETERN ; Parameter n
 RSX modules filter all BDOS calls and capture RSX function calls that they can
 handle. If there is no RSX module present in memory that can handle a specific RSX
 function call, the call is not trapped, and the BDOS returns OFFH in registers A and
 L. RSX function numbers from 0 to 127 are available for CP/M 3 compatible soft-
 ware use. RSX function numbers 128 to 255 are reserved for system use.

3-74

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 98: FREE BLOCKS
 Entry Parameters:
 Register C: 62H
 Returned Value:
 Registers A: Error Flag
 H: Physical Error

 The Free Blocks function scans all the currently logged-in drives, and for each
 drive returns to free space all temporarily-allocated data blocks. A temporarily-allo-
 cated data block is a block that has been allocated to a file by a BDOS write
 operation but has not been permanently recorded in the directory by a BDOS close
 operation. The CCP calls Function 98 when it receives control following a system
 warm start. Be sure to close your file, particularly any file you have written to, prior
 to calling Function 98.
 In the nonbanked version of CP/M 3, Function 98 frees only temporarily allocated
 blocks for systems that request double allocation vectors in GENCPM.
 Upon return, register A is set to zero if Function 98 is successful. If a physical
 error is encountered, the Free Blocks function performs different actions depending
 on the BDOS error mode (see Function 45). If the BDOS error mode is in the default
 mode, a message identifying the error is displayed at the console and the calling
 program is terminated. Otherwise, the Free Blocks function returns to the calling
 program with register A set to OFFH and register H set to the following physical
 error code:
 04 : Invalid drive error

3-75

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 99: TRUNCATE FILE
 Entry Parameters:
 Registers C: 63H
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Extended or Physical Error

 The Truncate File function sets the last record of a file to the random record
 number contained in the referenced FCB. The calling program passes the address of
 the FCB in register pair DE, with byte 0 of the FCB specifying the drive, bytes 1
 through 11 specifying the filename and filetype, and bytes 33 through 35, rO, rl, and
 r2, specifying the last record number of the file. The last record number is a 24 bit
 value, stored with the least significant byte first, rO, the middle byte next, rl, and the
 high byte last, r2. This value can range from 0 to 262,143, which corresponds to a
 maximum value of 3 in byte r2.
 If the file specified by the referenced FCB is password protected, the correct pass-
 word must be placed in the first eight bytes of the current DMA buffer, or have been
 previously established as the default password (see Function 106).
 Function 99 requires that the file specified by the FCB not be open, particularly if
 the file has been written to. In addition, any activated FCBs naming the file are not
 valid after Function 99 is called. Close your file before calling Function 99, and then
 reopen it after the call to continue processing on the file.

3-76

BDOS Function Calls CP/M 3 Programmers Guide

 Function 99 also requires that the random record number field of the referenced
 FCB specify a value less than the current file size. In addition, if the file is sparse, the
 random record field must specify a record in a region of the file where data exists.
 Upon return, the Truncate function returns a Directory Code in register A with the
 value 0 if the Truncate function is successful, or OFFH, 255 decimal, if the file is not
 found or the record number is invalid. Register H is set to zero in both of these
 cases. If a physical or extended error is encountered, the Truncate function performs
 different actions depending on the BDOS error mode (see Function 45). If the BDOS
 error mode is in the default mode, a message identifying the error is displayed at the
 console and the program is terminated. Otherwise, the Truncate function returns to
 the calling program with register A set to OFFH and register H set to one of the
 following physical or extended error codes:
 01 Disk I/O error
 02 Read-Only disk
 03 Read-Only file
 04 Invalid drive error
 07 File password error
 09 ? in filename or filetype field

3-77

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 100: SET DIRECTORY LABEL

 Entry Parameters:
 Registers C: 64H
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Physical or Extended Error

 The Set Directory Label function creates a directory label, or updates the existing
 directory label for the specified drive. The calling program passes in register pair DE
 the address of an FCB containing the name, type, and extent fields to be assigned to
 the directory label. The name and type fields of the referenced FCB are not used to
 locate the directory label in the directory; they are simply copied into the updated or
 created directory label. The extent field of the FCB, byte 12, contains the user's
 specificat-on of the directory label data byte. The definition of the directory label
 data byte is:
 bit 7 - Require passwords for password-protected files
 (Not supported in nonbanked CP/M 3 systems)
 6 - Perform access date and time stamping
 5 - Perform update date and time stamping
 4 - Perform create date and time stamping
 0 - Assign a new password to the directory label
 If the current directory label is password protected, the correct password must be
 placed in the first eight bytes of the current DMA, or have been previously estab-
 lished as the default password (see Function 106). If bit 0, the low-order bit, of byte
 12 of the FCB is set to 1, it indicates that a new password for the directory label has
 been placed in the second eight bytes of the current DMA.
 Note that Function 100 is implemented as an RSX, DIRLBL.RSX, in nonbanked
 CP/M 3 systems. If Function 100 is called in nonbanked systems when the DIRLBL.RSX
 is not resident an error code of 0FFH is returned.

3-78

BDOS Function Calls CP/M 3 Programmers Guide

 Function 100 also requires that the referenced directory contain SFCBs to activate
 date and time stamping on the drive. If an attempt is made to activate date and time
 stamping when no SFCBs exist, Function 100 returns an error code of OFFH in
 register A and performs no action. The CP/M 3 INITDIR utility initializes a directory
 for date and time stamping by placing an SFCB record in every fourth entry of the
 directory.
 Function 100 returns a Directory Code in register A with the value 0 if the direc-
 tory label create or update is successful, or OFFH, 255 decimal, if no space exists in
 the referenced directory to create a directory label, or if date and time stamping was
 requested and the referenced directory did not contain SFCBS. Register H is set to
 zero in both of these cases. If a physical error or extended error is encountered,
 Function 100 performs different actions depending on the BDOS error mode (see
 Function 45). If the BDOS error mode is the default mode, a message identifying the
 error is displayed at the console and the calling program is terminated. Otherwise,
 Function 100 returns to the calling program with register A set to OFFH and register
 H set to one of the following physical or extended error codes:
 01 Disk I/O error
 02 Read-Only disk
 04 Invalid drive error
 07 File password error

3-79

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 101: RETURN DIRECTORY
 LABEL DATA
 Entry Parameters:
 Registers C: 65H
 E: Drive
 Returned Value:
 Registers A: Directory Label
 Data Byte
 H: Physical Error

 The Return Directory Label Data function returns the data byte of the directory
 label for the specified drive. The calling program passes the drive number in register
 E with 0 for drive A, 1 for drive B, and so on through 15 for drive P in a full sixteen
 drive system. The format of the directory label data byte is shown below:
 bit 7 - Require passwords for password protected files
 6 - Perform access date and time stamping
 5 - Perform update date and time stamping
 4 - Perform create date and time stamping
 0 - Directory label exists on drive
 Function 101 returns the directory label data byte to the calling program in register
 A. Register A equal to zero indicates that no directory label exists on the specified
 drive. If a physical error is encountered by Function 101 when the BDOS Error mode
 is in one of the return modes (see Function 45), this function returns with register A
 set to OFFH, 25S decimal, and register H set to one of the following:
 01 Disk I/O error
 04 Invalid drive error

3-80

BDOS Function Calls CP/M 3 Programmers Guide

BDOS FUNCTION 102: READ FILE DATE STAMPS
 AND PASSWORD MODE
 Entry Parameters:
 Registers C: 66H
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Physical Error

 Function 102 returns the date and time stamp information and password mode for
 the specified file in byte 12 and bytes 24 through 32 of the specified FCB. The calling
 program passes in register pair DE, the address of an FCB in which the drive, file-
 name, and filetype fields have been defined.
 If Function 102 is successful, it sets the following fields in the referenced FCB:
 byte 12 : Password mode field
 bit 7 - Read mode
 bit 6 - Write mode
 bit 4 - Delete mode
 Byte 12 equal to zero indicates the file has not been assigned a password. In non-
 banked systems, byte 12 is always set to zero.
 byte 24 - 27 Create or Access time stamp field
 byte 28 - 31 Update time stamp field
 The date stamp fields are set to binary zeros if a stamp has not been made. The
 format of the time stamp fields is the same as the format of the date and time
 structure described in Function 104.

3-81

BDOS Function Calls CP/M 3 Programmers Guide

 Upon return, Function 102 returns a Directory Code in register A with the value
 zero if the function is successful, or OFFH, 255 decimal, if the specified file is not
 found. Register H is set to zero in both of these cases. If a physical or extended error
 is encountered, Function 102 performs different actions depending on the BDOS
 error mode (see Function 45). If the BDOS error mode is in the default mode, a
 message identifying the error is displayed at the console and the calling program is
 terminated. Otherwise, Function 102 returns to the calling program with register A
 set to OFFH and register H set to one of the following physical or extended error
 codes:
 01 Disk I/O error
 04 Invalid drive error
 09 ? in filename or filetype field

3-82

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 103: WRITE FILE XFCB
 Entry Parameters:
 Registers C: 67H
 DE: FCB Address
 Returned Value:
 Registers A: Directory Code
 H: Physical Error

 Ile Write File XFCB function creates a new XFCB or updates the existing XFCB
 for the specified file. The calling program passes in register pair DE the address of an
 FCB in which the drive, name, type, and extent fields have been defined. The extent
 field specifies the password mode and whether a new password is to be assigned to
 the file. The format of the extent byte is shown below:
 FCB byte 12 (ex) : XFCB password mode
 bit 7 - Read mode
 bit 6 - Write mode
 bit 5 - Delete mode
 bit 0 - Assign new password to the file
 If the specified file is currently password protected, the correct password must reside
 in the first eight bytes of the current DMA, or have been previously established as
 the default password (see Function 106). If bit 0 is set to 1, the new password must
 reside in the second eight bytes of the current DMA.

3-83

BDOS Function Calls CP/M 3 Programmers Guide

 Upon return, Function 103 returns a Directory Code in register A with the value
 zero if the XFCB create or update is successful, or OFFH, 255 decimal, if no directory
 label exists on the specified drive, or the file named in the FCB is not found, or no
 space exists in the directory to create an XFCB. Function 103 also returns with OFFH
 in register A if passwords are not enabled by the referenced directory's label. On
 nonbanked systems, this function always returns with register A = OFFH because
 passwords are not supported. Register H is set to zero in all of these cases. If a
 physical or extended error is encountered, Function 103 performs different actions
 depending on the BDOS error mode (see Function 45). If the BDOS error mode is
 the default mode, a message identifying the error is displayed at the console and the
 calling program is terminated. Otherwise, Function 103 returns to the calling pro-
 gram with register A set to OFFH and register H set to one of the following physical
 or extended error codes:
 01 Disk I/O error
 02 Read-Only disk
 04 Invalid drive error
 07 File password error
 09 ? in filename or filetype field

3-84

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 104: SET DATE AND TIME
 Entry Parameters:
 Registers C: 68H
 DE: DAT Address
 Returned Value: none

 The Set Date and Time function sets the system internal date and time. The calling
 program passes the address of a 4-byte structure containing the date and time speci-
 fication in the register pair DE. The format of the date and time (DAT) data structure
 is:
 byte 0 - 1 Date field
 byte 2 Hour field
 byte 3 Minute field
 The date is represented as a 16-bit integer with day 1 corresponding to January 1,
 1978. The time is represented as two bytes: hours and minutes are stored as two
 BCD digits.
 This function also sets the seconds field of the system date and time to zero.

3-85

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 105: GET DATE AND TIME
 Entry Parameters:
 Registers C: 69H
 DE: DAT Address
 Returned Value:
 Register A: seconds
 DAT set

 The Get Date and Time function obtains the system internal date and time. The
 calling program passes in register pair DE, the address of a 4-byte data structure
 which receives the date and time values. The format of the date and time, DAT, data
 structure is the same as the format described in Function 104. Function 105 also
 returns the seconds field of the system date and time in register A as a two digit BCD
 value.

3-86

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 106: SET DEFAULT PASSWORD
 Entry Parameters:
 Registers C: 6AH
 DE: Password Address
 Returned Value: none

 The Set Default Password function allows a program to specify a password value
 before a file protected by the password is accessed. When the file system accesses a
 password-protected file, it checks the current DMA, and the default password for the
 correct value. If either value matches the file's password, full access to the file is
 allowed. Note that this function performs no action in nonbanked CP/M 3 systems
 because file passwords are not supported.
 To make a Function 106 call, the calling program sets register pair DE to the
 address of an 8-byte field containing the password.

3-87

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 107: RETURN SERIAL NUMBER
 Entry Parameters:
 Registers C: 6BH
 DE: Serial Number Field
 Returned Value: Serial number field set

 Function 107 returns the CP/M 3 serial number to the 6-byte field addressed by
 register pair DE.

3-88

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 108: GET/SET PROGRAM RETURN
 CODE
 Entry Parameters:
 Registers C: 6CH
 DE: 0FFFFH (Get) or
 Program Return Code (Set)
 Returned Value:
 Register HL: Program Return Code or (no value)

 CP/M 3 allows programs to set a return code before terminating. This provides a
 mechanism for programs to pass an error code or value to a following job step in
 batch environments. For example, Program Return Codes are used by the CCP in
 CP/M 3's conditional command line batch facility. Conditional command lines are
 command lines that begin with a colon, :. The execution of a conditional command
 depends on the successful execution of the preceding command. The CCP tests the
 return code of a terminating program to determine whether it successfully completed
 or terminated in error. Program return codes can also be used by programs to pass
 an error code or value to a chained program (see Function 47, Chain To Program).
 A program can set or interrogate the Program Return Code by calling Function
 108. If re 'ster pair DE = OFFFFH, then the current Program Return Code is returned
 in register pair HL. Otherwise, Function 108 sets the Program Return Code to the
 'value contained in register pair DE. Program Return Codes are defined in Table 3-5.

3-89

BDOS Function Calls CP/M 3 Programmers Guide

 Table 3-5. Program Return Codes
 Code Meaning
 0000 - FEFF Successful return
 FF00 - FFFE Unsuccessful return
 0000 The CCP initializes the Program Return Code to zero unless
 the program is loaded as the result of program chain.
 FF80 - FFFC Reserved
 FFFD The program is terminated because of a fatal BDOS error.
 FFFE The program is terminated by the BDOS because the user
 typed a CTRL-C.

3-90

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 109: GET/SET CONSOLE MODE
 Entry Parameters:
 Registers C: 6DH
 DE: OFFFFH (Get) or Console Mode (Set)
 Returned Value:
 Register HL: Console Mode or (no value)

 A program can set or interrogate the Console Mode by calling Function 109. If
 register pair DE = OFFFFH, then the current Console Mode is returned in register
 HL. Otherwise, Function 109 sets the Console Mode to the value contained in regis-
 ter pair DE.
 The Console Mode is a 16-bit system parameter that determines the action of
 certain BDOS Console I/O functions. The definition of the Console Mode is:
 bit 0 = 1 - CTRL-C only status for Function 1 1.
 = 0 - Normal status for Function 1 1.
 bit 1 = 1- Disable stop scroll, CTRL-S, start scroll, CTRL-Q, support.
 = 0-Enable stop scroll, start scroll support.
 bit 2 = 1- Raw console output mode. Disables tab expansion for Functions 2,
 9 and 111. Also disables printer echo, CTIRL-P, support.
 = 0 - Normal console output mode.
 bit 3 = 1 - Disable CTRL-C program termination
 = 0 - Enable CTRL-C program termination

3-91

BDOS Function Calls CP/M 3 Programmers Guide

 bits 8,9 -Console status mode for RSXs that perform console input redirec-
 tion from a file. These bits determine how the RSX responds to
 console status requests.
 bit 8 = 03 bit 9 = 0 - conditional status
 bit 8 = 01 bit 9 = 1 - false status
 bit 8 = 1, bit 9 = 0 - true status
 bit 8 = 11 bit 9 = 1 - bypass redirection
 Note that the Console Mode bits are numbered from right to left.
 The CCP initializes the Console Mode to zero when it loads a program unless the
 program has an RSX that overrides the default value. Refer to Section 2.2.1 for
 detailed information on Console Mode.

3-92

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 110: GET/SET OUTPUT DELIMITER
 Entry Parameters:
 Registers C: 6EH
 DE: OFFFFH (Get) or
 E: Output Delimiter (Set)
 Returned Value:
 Register A: Output Delimiter or (no value)

 A program can set or interrogate the current Output Delimiter by calling Function
 110. If register pair DE = 0FFFFH, then the current Output Delimiter is returned in
 register A. Otherwise, Function 110 sets the Output Delimiter to the value contained
 in register E.
 Function 110 sets the string delimiter for Function 9, Print String. The default
 delimiter value is a dollar sign, $. The CCP restores the Output Delimiter to the
 default value when a transient program is loaded.

3-93

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION111: PRINT BLOCK
 Entry Parameters:
 Registers C: 6FH
 DE: CCB Address
 Returned Value: none

 The Print Block function sends the character string located by the Character Con-
 trol Block, CCB, addressed in register pair DE, to the logical console, CONOUT:. If
 the Console Mode is in the default state (see Section 2.2.1), Function 111 expands
 tab characters, CTRL-I, in columns of eight characters. It also checks for stop scroll,
 CTRL-S, start scroll, CTRL-Q, and echoes to the logical list device, LST:, if printer
 echo, CTRL-P, has been invoked.
 The CCB format is:
 byte 0 - 1 Address of character string (word value)
 byte 2 - 3 Length of character string (word value)

3-94

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 112: LIST BLOCK
 Entry Parameters:
 Registers C: 70H
 DE: CCB Address
 Returned Value: none

 The List Block function sends the character string located by the Character Control
 Block, CCB, addressed in register pair DE, to the logical list device, LST.-.
 The CCB format is:
 byte 0 - 1 Address of character string (word value)
 byte 2 - 3 Length of character string (word value)

3-95

BDOS Function Calls CP/M 3 Programmers Guide

 BDOS FUNCTION 152: PARSE FILENAME
 Entry Parameters:
 Registers C: 98H
 DE: PFCB Address
 Returned Value:
 Register HL: Return code
 Parsed file control block

 The Parse Filename function parses an ASCII file specification and prepares a File
 Control Block, FCB. The calling program passes the address of a data structure called
 the Parse Filename Control Block, PFCB, in register pair DE. The PFCB contains the
 address of the input ASCII filename string followed by the address of the target FCB
 as shown below:
 PFCB: DW INPUT ; Address of input ASCII string
 DW FCB ; Address of target FCB
 The maximum length of the input ASCII string to be parsed is 128 bytes. The target
 FCB must be 36 bytes in length.
 Function 152 assumes the input string contains file specifications in the following
 form:
 {d:}filename{.typll}{;password}
 where items enclosed in curly brackets are optional. Function 152 also accepts iso-
 lated drive specifications d: in the input string. When it encounters one, it sets the
 filename, filetype, and password fields in the FCB to blank.

3-96

BDOS Function Calls CP/M 3 Programmers Guide

 The Parse Filename function parses the first file specification it finds in the input
 string. The function first eliminates leading blanks and tabs. The function then assumes
 that the file specification ends on the first delimiter it encounters that is out of
 context with the specific field it is parsing. For instance, if it finds a colon, and it is
 not the second character of the file specification, the colon delimits the entire file
 specification.
 Function 152 recognizes the following characters as detimiters:
 space
 tab
 return
 nut]
 ; (semicolon) - except before password field
 = (equal)
 < (less than)
 > (greater than)
 . (period) - except after filename and before filetype
 : (colon) - except before filename and after drive
 , (comma)
 | (vertical bar)
 [(left square bracket)
] (right square bracket)
 If Function 152 encounters a non-graphic character in the range 1 through 31 not
 listed above, it treats the character as an error. The Parse Filename function initializes
 the specified FCB shown in Table 3-6.

3-97

BDOS Function Calls CP/M 3 Programmers Guide

 Table 3-6. FCB Format
 Location Contents
 byte 0 The drive field is set to the specified drive. If the drive is not
 specified, the default drive code is used. 0 = default, 1 = A,
 2 = B.
 byte 1-8 The name is set to the specified filename. All letters are con-
 verted to upper-case. If the name is not eight characters long,
 the remaining bytes in the filename field are padded with blanks.
 If the filename has an asterisk,, *, all remaining bytes in the
 filename field are filled in with question marks, ?. An error
 occurs if the filename is more than eight bytes long.
 byte 9-11 The type is set to the specified filetype. If no filetype is speci-
 fied, the type field is initialized to blanks. All letters are con-
 verted to upper-case. If the type is not three characters long,
 the remaining bytes in the filetype field are padded with blanks.
 If an asterisk, *, occurs, all remaining bytes are filled in with
 question marks, ?. An error occurs if the type field is more
 than three bytes long.
 byte 12-15 Filled in with zeros.
 byte 16-23 The password field is set to the specified password. If no pass-
 word is specified, it is initialized to blanks. If the password is
 less than eight characters long, remaining bytes are padded
 with blanks. All letters are converted to upper-case. If the pass-
 word field is more than eight bytes long, an error occurs. Note
 that a blank in the first position of the password field implies
 no password was specified.
 byte 24-31 Reserved for system use.

3-98

BDOS Function Calls CP/M 3 Programmers Guide

 If an error occurs, Function 152 returns an 0FFFFH in register pair HL.
 On a successful parse, the Parse Filename function checks the next item in the
 input string. It skips over trailing blanks and tabs and looks at the next character. If
 the character is a null or carriage return, it returns a 0 indicating the end of the input
 string. If the character is a delimiter, it returns the address of the delimiter. If the
 character is not a delimiter, it returns the address of the first trailing blank or tab.
 If the first non-blank or non-tab character in the input string is a null, 0, or
 carriage return, the Parse Filename function returns a zero indicating the end of
 string.
 If the Parse Filename function is to be used to parse a subsequent file specification
 in the input string, the returned address must be advanced over the delimiter before
 placing it in the PFCB.

End of Section 3

3-99

BDOS Function Calls CP/M 3 Programmers Guide

Section 4

Programming Examples

 The programs presented in this section illustrate how to use the BDOS functions
 described in the previous section. The examples show how to copy a file, how to
 dump a file, how to create or access a random access file, and how to write an RSX
 program.
 4.1 A Sample File-To-File Copy Program
 The following program illustrates simple file operations. You can create the pro-
 gram source file, COPY.ASM, using ED or another editor, and then assemble
 COPY.ASM using MAC. MAC produces the file COPY.HEX. Use the utility
 HEXCOM to produce a COPY.COM file that can execute under CP/M 3.
 The COPY program first sets the stack pointer to a local area, then moves the
 second name from the default area at 006CH to a 33-byte file control block named
 DFCB. The DFCB is then prepared for file operations by clearing the current record
 field. Because the CCP sets up the source FCB at 005CH upon entry to the COPY
 program, the source and destination FCBs are now ready for processing. To prepare
 the source FCB, the CCP places the first name into the default FCB, with the proper
 fields zeroed, including the current record field at 007CH.
 COPY continues by opening the source file, deleting any existing destination file,
 and then creating the destination file. If each of these operations is successful, the
 COPY program loops at the label COPY until each record is read from the source
 file and placed into the destination file. Upon completion of the data transfer, the
 destination file is closed, and the program returns to the CCP command level by
 lumping to BOOT.

4-1

; sample file-to-file copy program
; at the ccp level , the command
; copy a:x.y b:u.v
; copies the file named x.y from drive
; a to a file named u.v on drive b.

0000 = boot equ 0000h ; system reb00t
0005 = bdos equ 0005h ; bdos entry P0int
005c = fcbl equ 00Sch ; first file name
005c = sfcb equ fcbl ; source fcb
006c = fcbZ equ 00Bch ; second file name
0080 = dbuff equ 0080h ; default buffer
0100 = tpa equ 0100h ; beginning 0f tpa
0003 = printf equ 9 ; Print buffer func*
000f = openf equ 15 ; Open file func*
0010 = closef equ 16 ; close file func*
0013 = deletef equ 19 ; delete file func*
0014 = readf equ 20 ; sequential read
0015 = writef equ 21 ; sequential write
0016 = makef equ 22 ; make file func*

;
0100 org tpa ; beginning of tpa
0100 311b02 lxi sp,stack; local stack

;
; move second file name to dfcb

0103 0el0 mvi c,16 ; half an fcb
0105 116c00 lxi d,fcb2 ; source of move
0108 2lda0l lxi h,dfcb ; destination fcb
0l0b la mfcb: ldax d ; source fcb
0l0c 13 inx d ; ready next
0l0d 77 m0v m,a ; dest fcb
0l0e 23 inx h ; ready next
0l0f 0d dcr c ; count l6...0
0110 c20b0l jnz mfcb ; loop 16 times

; name has been moved, zero cr
0113 af xra a ; a = 00h
0114 32fa01 sta dfcbcr ; current rec = 0

4-1

4.1 A Sample Copy Program CP/M 3 Programmer's Guide

; source and destination fcbs ready
;

0117 1l5c00 lxi d,sfcb ; source file
0lla cd690l call 0pen ; error if 255
0lid 118701 lxi d,nofile; ready message
0120 3c inr a ; 255 becomes 0
0121 cc6l0l cz finis ; done if no file

;
; source file open, prep destination

0l24 llda0l lxi d ,dfcb ; destination
0127 cd7301 call delete ; remove if present
0lZa llda0l lxi d,dfcb ; destination
0lZd cdB20l call make ; create the file
0130 119601 lxi d,nodir ; ready message
0133 3c inr a ; 255 becomes 0
0134 cc6l0l cz finis ; done if no dir space

;
; source file open, dest file open
; copy until end of file on source

0137 115c00copy: lxi d,sfcb ; source
013a cd780l call read ; read next record
013d b7 ora a ; end of file?
013e c25101 Jnz eofile ; skip write if s0

; not end of file, write the record
0141 llda0l lxi d,dfcb ; destination
0144 cd7d0l call write ; write record
0147 11a901 lxi d,space; ready message
014a b7 ora a ; 00 if write ok
014b c46101 cnz finis ; end if so
014e c33701 Jmp copy ; loop until eof

;
eofile: ; end of file, close destination

0151 llda0l lxi d,dfcb ; destination
0154 cd6e0l call close ; 255 if error
0157 2lbb0l lxi h,wrprot; ready message
015a 3c inr a ; 255 becomes 00
015b cc6l0l cz finis ; should not happen

;
; copy operation complete, end

0lSe llcc0l lxi d,normal ; ready message
;
finis: ; write message given by de, reboot

0161 0e09 mvi c,printf
0163 cd0500 call bdos ; write message
0166 c30000 Jmp boot ; reboot system4-3

4.1 A Sample Copy Program CP/M 3 Programmer's Guide

; system interface subroutines
; (all return directly from bdos)

0169 0e0f open: mvi c ,openf
016b c30500 Jmp bdos
016e 0el0 close: mvi c,closef
0170 c30500 Jmp bdos
0173 0e13 delete: mvi c ,deletef
0175 c30500 Jmp bdos
0178 0e14 read: mvi C ,readf
017a c30500 Jmp bdos
017d 0e15 write: mvi c ,writef
017f c30500 Jmp bdos
0182 0e16 maKe: mvi c,makef
0184 c30500 Jmp bdos

 ; console messages
0187 6e6f20f nofile: db 'no source file$'
0196 6e6f209 nodir: db 'no directory space$'
01a9 5f7s74f space: db 'out of data space$'
0lbb 7772695 wrprot: db 'write protected?$'
0lcc 636f700 normal: db 'copy complete$'

; data areas
0lda dfcb: ds 33 ; destination fcb
0lfa = dfcbcr equ dfcb+32 ; current record
0lfb ds 32 ; 16 level stack

stack:
021b end

 Note that this program makes several simplifications and could be enhanced. First,
 it does not check for invalid filenames that could, for example, contain ambiguous
 references. This situation could be detected by scanning the 32-byte default area
 starting at location 005CH for ASCII question marks. To check that the filenames
 have, in fact, been included, COPY could check locations 005DH and 006DH for
 nonblank ASCII characters. Finally, a check should be made to ensure that the source
 and destination filenames are different. Speed could be improved by buffering more
 data on each read operation. For example, you could determine the size of memory
 by fetching FBASE from location 0006H, and use the entire remaining portion of
 memory for a data buffer. You could also use CP/M 3's Multi-Sector I/O facility to
 read and write data in up to 16K units.

4-4

4.1 A Sample Copy Program CP/M 3 Programmer's Guide

 4.2 A Sample File Dump Utility
 The following dump program reads an input file specified in the CCP command
 line, and then displays the content of each record in hexadecimal format at the
 console. DUMP Program reads input file and displays hex data

; DUMP program reads input file and displays hex data
;

0100 org l00h
0005 = bd0s equ 0005h ;bdos entry point
0001 = c0ns equ 1 ;read console
0002 = typef equ 2 ;type function
0009 = printf equ 9 ;buffer print entry
000b = brkf equ 11 ;break key functi0n (true if char
000f = openf equ 15 ;file open
0014 = readf equ 20 ;read function
005c = fcb equ Sch ;file control block address
0080 = buff equ 80h ;input disk buffer address

; non graphic characters
000d = cr equ 0dh ;carriage return
000a = lf equ 0ah ;line feed

; file control block definitions
005c = fcbdn equ fcb+0 ;disk name
005d = fcbfn equ fcb+1 ;file name
0065 = fcbft equ fcb+B ;disk file tyPe (3 characters)
0068 = fcbrl equ fcb+12 ;file's current reel number
00Gb = fcbrc equ fcb+15 ;file's record count (0 to 128)
007c = fcbcr equ fcb+32 ;current (next) record number (0
007d = fcbln equ fcb+33 ;fcb length

; set up stack
0100 210000 lxi h,0
0103 39 dad sp

; entry stack pointer in hi from the ccp
0104 221502 shld oldsp

; set sp to local stack area (restored at finis)
0107 315702 lxi sp,stktop

; read and Print successive buffers
0l0a cdcl0l call setup ;set up input file
0l0d feff cpi 255 ;255 if file not present
0l0f c2lb0l jnz openok ;skip if open is ok

;

4-5

4.2 A Sample File Dump Utility CP/M 3 Programmer's Guide

; file not there, give error message and return
0112 11f301 lxi d,opnmsg
0115 cd9c0l call err
0118 c35101 jmp finis ;to return

openok: ;open operation ok, set buffer index to end
0lib 3e80 mvi a,80h
0lid 321302 sta ibp ;set buffer pointer to 80h

; hl contains next address to print
0120 210000 lxi h,0 ;start with 0000

gloop:
0123 e5 push h ;save line position
0124 cda20l call gnb
0127 el pop h ;recall line position
0128 da5l0l jc finis ;carry set by gnb if end file
012b 47 mov b,a

; print hex values
; check for line fold

012c 7d mov a,l
012d e80f ani 0fh ;check low 4 bits
012f c24401 jnz nonum

; print line number
0132 cd7201 call crlf

; check for break key
0135 cd590l call break

; accum lsb = 1 if character ready
0138 0f rrc ;into carry
0139 da5l0l jc finis ;do not print any more
 013c 7c mov a,h
013d cdBf0l call phex
0140 7d mov a,l
0141 cd8f0l call phex
 nonum:
0144 23 inx h ;to next line number
0145 3e20 mvi a,' '
0147 cd650l call pchar
014a 78 mov a,b
014b cd8f0l call phex
014e c32301 jmp gloop

4-6

4.2 A Sample File Dump Utility CP/M 3 Programmer's Guide

;
finis:
; end of dump

0151 cd7201 call crlf
0154 2a1502 lhld oldsp
0157 f9 sphl

; stack pointer contains ccp's stack location
0158 c9 ret ;to the ccp

; subroutines
break: ;check break key (actually any key will do)

0159 e5d5c5 push h!push d! push b; environment saved
015c 0e0b mvi c,brkf
0l5e cd0500 call bdos
0161 cidlel pop b! pop d! pop h; environment restored
0164 c9 ret

pchar: ;print a character
0165 e5d5c5 push h! push d! push b; saved
0188 0e02 mvi c,typef
016a 5f mov e ,a
016b cd0500 call bdos
016e cidlel pop b! pop d! pop h; restored
0171 c9 ret

crlf:
0172 3e0d mvi a,cr
0174 cd6501 call pchar
0177 3e0a mvi a,lf
0179 cdBS0l call pchar
017c c9 ret

pnib: ;print nibble in reg a
017d e60f ani 0fh ;low 4 bits
017f fe0a cpi 10
0181 d28901 jnc p10

; less than or equal to 9
0184 c630 adi '0'
0188 c38b01 jmp prn

; greater 0r equal t0 10
0189 c637 pl0: adi 'a' - 10
018b cd6501prn: call pchar
018e c9 ret

4-7

4.2 A Sample File Dump Utility CP/M 3 Programmer's Guide

phex: ;Print hex char in reg a
018f f5 push psw
0190 0f rrc
0191 0f rrc
0192 0f rrc
0193 0f rrc
0194 cd7d0l call pnib ;print nibble
0197 fi pop pSW
0198 cd7d0l call pnib
018b c9 ret

err: ;Print err0r message
; d,e addresses message ending With"$"

019c 0e09 mvi c,printf ;print buffer functi0n
019e cd0S00 call bdos
0lal c9 ret

gnb ;get next byte
01a2 3a1302 lda ibp
0la5 fe80 cPi 80h
01a7 c2b301 jnz g0

; read another buffer
0laa cdce0l call diskr
0lad b7 ora a ;zero value if read ok
0lae cab30l jz g0 ;for another byte

; end of data, return With carry Set for eof
0lbi 37 stc
01b2 c9 ret

g0: ;read the byte at buff+reg a
01b3 5f mov e,a ;ls byte of buffer index
01b4 1600 mvi d,0 ;double precision index to de
01b6 3c inr a ;index=index+l
01b7 321302 sta ibp ;back to memory

; Pointer is incremented
; save the current file address

0lba 218000 lxi h,buff
0lbd 19 dad d

; abs0lute character address is in hl
0lbe 7e mov a,m

; byte is in the accumulator
0lbf b7 ora a ;reset carry bit
0lc0 c9 ret

4-8

4.2 A Sample File Dump Utility CP/M 3 Programmer's Guide

setup: ;set up file
; open the file for input

01c1 af xra a ;zero to accum
01c2 327c00 sta fcbcr ;clear current rec0rd
0lc5 115c00 lxi d,fcb
01c8 0e0f mvi c,openf
0lca cd0500 call bdos

; 255 in accum if open error
0lcd c9 ret

diskr: ;read disk file record
0lce e5d5c5 Push h!Push d! Push b
0ldI 115c00 lxi d,fcb
01d4 0e14 mvi c,readf
01d6 cd0500 call bdos
01d9 c1d1e1 Pop b! Pop d! Pop h
0ldc c9 ret

; fixed message area
0ldd 46494c0 signon: db 'file dumP version 2.0$'
01f3 0d0a4e0 opnmsg: db cr,lf ,'no input file Present on disk$'

; variable area
0213 ibp: ds 2 ;input buffer Pointer
0215 oldsp: ds 2 ;entry sP value from ccP

; stack area
0217 ds 64 ;reserve 32 level stack

stktop:
0257 end

4-9

4.2 A Sample File Dump Utility CP/M 3 Programmer's Guide

 4.3 A Sample Random Access Program
 This example is an extensive but complete example of random access operation.
 The following program reads or writes random records upon command from the
 terminal. When the program has been created, assembled, and placed into a file
 labeled RANDOM.COM, the CCP level command
 A>RANDOM X.DAT
 can start the test program. In this case, the RANDOM program looks for a file
 X.DAT and, if it finds it, prompts the console for input. If X.DAT is not found,
 RANDOM creates the file before displaying the prompt. Each prompt takes the
 form:
 next command?
 and is followed by operator input, terminated by a carriage return. The input com-
 mands take the form:
 nW nR nF Q
 where n is an integer value in the range 0 to 262143, and W, R, F, and Q are simple
 command characters corresponding to random write, W, random read, R, random
 write with zero fill, F, and quit processing, Q. If you enter a W or F command, the
 RANDOM program issues the prompt:
 type data:
 You then respond by typing up to 127 characters, followed by a carriage return.
 RANDOM then writes the character string into the X.DAT file at record n. If you
 enter an F command, the RANDOM program fills previously unallocated data blocks
 with zeros before writing record n. If you enter the R command, RANDOM reads
 record number n and displays the string value at the console. If you enter the Q
 command, the X.DAT file is closed, and the program returns to the console com-
 mand processor. In the interest of brevity, the only error message is:
 err , try again

4-10

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

 The program begins with an initialization section where the input file is opened or
 created, followed by a continuous loop at the label ready where the individual com-
 mands are interpreted. The program uses the default file control block at 005CH and
 the default buffer at 0080H in all disk operations. The utility subroutines that follow
 contain the principal input line processor, called readc. This particular program shows
 the elements of random access processing and can be used as the basis for further
 program development.

;***
;* *
;* sample random access Program for cP/m 3 *
;* *
;***
0100 org l00h ;base of tpa
0000 = reboot equ 0000h ;system reboot
0005 = bdos equ 0005h ;bdos entry Point
0001 - coninp equ 1 ;console input function
0002 - conout equ 2 ;console outPut functo0n
0009 - pstring equ 9 ;Print string until '$'
000a = rstring equ 10 ;read console buffer
000c - version equ 12 ;return version number
00of = openf equ 15 ;file open function
0010 - closef equ 16 ;close function
0016 - makef equ 22 ;make file function
0021 - readr equ 33 ;read random
0022 - Writer equ 34 ;write random
0028 - Wrtrzf equ 40 ;Write random zero fill
0098 - parsef equ 152 ;parse function
005c - fcb equ 00Sch ;default file control block
007D - ranrec equ fcb+33 ;random record Position
007F = ran0vf equ fcb+35 ;high order (overflow) byte
0080 = buff equ 0080h ;buffer address
000D = or equ 0dh ;carriage return
000a = 1f equ 0ah ;line feed

4-11

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

;************************************
;* *
;* load SP, Set-up file for random access *
;* *
;************************************

0100 313703 lxi sp,stack
; version3.1?

0103 0E0c mvi c,version
0105 cD0500 call bdos
0108 FE20 cp 31h ;version 3.1 or better?
0i0a D21601 jnc versok

; bad version, message and go back
0l0D 118102 lxi d,badver
0110 cD3102 call Print
0113 c30000 jmp reboot
 versok :

; correct version for random access
0116 QEof mvi c,openf;open default fcb
0118 3a5D00rdname: lda fcb+1
011b FE20 cPi ' '
011d c22c01 jnz opfile
0120 11E002 lxi d,entmsg
0123 cD3102 call Print
0126 cD2002 call Parse
0129 c31801 jmP rdname
012c iisc00 opfile: lxi d,fcb
012F cd0so0 call bdos
0132 3c inr a ;err 255 becomes zero
0133 c24501 jnz ready

; cannot open file, so create it
0136 0E16 mvi c,makef
0138 115c00 lxi d,fcb
013b cd0so0 call bdos
013E 3c inr a ;err 255 becomes zero
013F c24b01 jnz ready

; cannot create file, directory full
0142 iia00z lxi d,nospace
0145 cd3102 call print
0148 c30000 jmp reboot ;back to ccP

4-12

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

; **
;* *
;* loop back to "ready" after each command *
;* *
;**
ready:
; file is ready for processing

014b cD3C02 call readcom ;read next command
014E 227D00 shld ranrec ;store input record*
0151 217F00 lxi h,ran0vf
0154 71 mov m,c ;set ranrec high byte
0155 FE51 cpi 'Q' ;quit?
0157 C26901 jnz notq

; quit processing, close file
0isa 0E10 mvi c,closef
01SC 115C00 lxi d,fcb
015F CD0500 call bdos
0162 3C inr a ;err 255 becomes 0
0163 CaFF0ljz error ;error meSsage ' retry
0166 c30000 jmp reboot iback to ccP

;
;******************************
;* end of quit command, pr0cess write *
;* *
;***
notq:
; not the quit command, random Write?

0169 FES7 cpi 'W'
016b C29C01 jnz notw

 ; this is a random Write, fill buffer until cr
016E 11b302lxi d,datmsg
0171 CD3102 call Print ;data Prompt
0174 0E7F mvi c,127 ;UP to 127 characters
0176 218000 lxi h,buff ;destination

 rloop: ;read next character to buff
0179 C5 push b ;save counter
017a E5 push h ;next destination
017b CD0802 call getchr;character to a
017E El pop h +;irestore counter
017F C1 pop b ;restore next to fill
0180 FE0D cpi Cr ;end of line?
0182 Ca8b0l jz erloop

4-13

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

; not end; Store character
0185 77 mov m,a
0186 23 inx h +;inext to fill
0187 0D dcr c +;icounter goes down
0188 C27901 jnz rloop +;iend of buffer?

erloop:
; end of read loop, Store 00

018b 3600 mvi m,0
; write the record to selected record number

018D 0E22 mvi c,Writer
018F 115C00 lxi d,fcb
0192 CD0so0 call bdos
0195 b7 ora a +;ierror code zero?
0196 C2FF0I jnz error +;imessage if not
0199 C34b01 jmp ready +;ifor another record

; **
;* *
;* end of Write command, pr0cess Write random zero fill *
;* *
; **
notw:
; not the quit command; random Write zero fill?

019C FE46 cpi 'F'
019E C2CF0I jnz notf

; this is a random Write; fill buffer until cr
01a1 11b302lxi d,datmsg
01a4 CD3102 call print ;data Prompt
01a7 0E7F mvi c,127 +;iUP to 127 characters
01a9 218000 lxi h,buff ;destination

rloop1: ;iread next character to buff
0laC C5 push b +;isave counter
0laD E5 push h +;inext destination
0laE CD0802 call getchr +;icharacter to a
0lbI El pop h +;irestore counter
01b2 C1 pop b +;irestore next to fill
01b3 FE0D cpi cr +;iend of line?
01b5 CabE0l jz erloop1

; not end , store character
01b8 77 mov m,a
01b9 23 inx h ;next to fill
0lba 0D dcr c ;counter goes down
0lbb C2aC01 jnz rloopl ;end of buffer?

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

erloop1 :
; end of read loop, Store 00

0lbE 3600 mvi m,0
; Write the record to selected record number

0lc0 0E28 mvi c,wrtrzf
01C2 115C00 lxi d,fcb
01C5 CD0500 call bdos
01C8 b7 ora a ;error code zero?
01C9 C2FF0ljnz error ;message if not
01CC C34b01 jmp ready +;ifor another record

;************************************
;* *
;* end of Write commands; pr0cess read *
;* *
;************************************
notf :
; not a Write command, read record?

0ICF FES2 cpi 'R'
0lDi C2FF01 jnz error ;skip if not

; read random record
01D4 0E21 mvi c;readr
01DB 115C00 lxi d,fcb
01D9 CD0500 call bdos
0lDC b7 ora a +;ireturn code 00?
0IDD C2FF0I jnz error

; read was Successful , Write to c0nsole
0lE0 CD1502 call crlf ;new line
01E3 0E80 mvi c,128 ;max 128 characters
0IE5 218000 lxi h,buff +;inext to get

wloop :
01E8 7E mov a,m ;next character
01E9 23 inx h ;next to get
0lEa E67F ani 7fh ;mask Parity
0lEC Ca4b0l jz ready ;for another command if 00
0lEF C5 push b +;isave counter
0lF0 E5 push h +;isave next to get
0lFl FEZ0 cpi ' ' ;graphic?
01F3 D40E02 cnc putchr +;iskip 0utput if not
0lFB El pop h
01F7 C1 pop b
01F8 0D dcr c +;icount=count-l
01F9 C2E801 jnz wloop
0lFC C34b01 jmp ready

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

;**
;* *
;* end of read command , all errors end-up here *
;* *
;**

e r ror :
01FF 11bF02 lxi d,errmsg
0202 CD3102 call Print
0205 C34b01 jmp ready

;******************************
;* *
;* utility subroutines for console I/O *
;i* *
;******************************

getchr:
;read next console character to a

0208 0E0l mvi c,coninp
020a CD0so0 call bdos
020D C9 ret

putchr:
;write character a to console

020E 0E02 mvi c,conout
0210 5F mov e ,a ;character to Send
0211 CD0500 call bdos +;isend character
0214 C9 ret

;
crlf:

;sen carriage return line feed
0215 3E0D mvi a,cr ;carriage return
0217 CD0E02 call putchr
021a 3E0a mvi a,lf ;line feed
021C CD0E02 call putchr
021F C9 ret

;
parse :

 ;read and parse filespec
0220 11F102 lxi d,c0nbuf
0223 0E0a mvi c,rstring
0225 CD0500 call bdos
0228 111303 lxi d,pfncb
022b 0E98 mvi c,parsef
022D CD0500 call bdos
0230 C9 ret

4-16

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

print:
;print the buffer addressed by de Until $

0231 D5 push d
0232 CD1502 call crlf
0235 Dl pop d ;new line
0236 0E09 mvi c,pstring
0238 CD0so0 call bdos ;print the String
023b C9 ret

readcom:
;iread the next command line to the conbuf

023C 11D102 lxi d,Prompt
023F CD3102 call print ;command?
0242 0E0a mvi c,rstring
0244 11F102 lxi d,conbuf
0247 CD0500 call bdos ;read command line

; command line iS present, scan it
024a 0E00 mvi c,0 ;Start With 00
024C 210000 lxi h,0 ; 0000
024F 11F302 lxi d,c0nlin;icommand line
0252 la readc: idax d ;inext command character
0253 13 inx d ;ito next command Position
0254 b7 ora a ;cannot be end of command
0255 C8 rz

; not zero, numeric?
0256 D630 sui '0'
0258 FE0a cpi 10 +;icarry if numeric
025a D27902 jnc endrd

4-17

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

; add-in next digit
025D F5 push psw
025E 79 mov a,c ;value in ahl
025F 29 dad h
0260 8F adc a +;i*2
0261 F5 push a +;isave value * 2
0262 E5 push h
0263 29 dad h ;*4
0264 8F adc a
0265 29 dad h ;*8
0266 8F adc a
0267 C1 pop b +;i*2 + *8 = *10
0268 09 dad b
0269 C1 pop b
026a 88 adc b
026b C1 pop b +;i+digit
026C 48 mov c,b
026D 0600 mvi b,0
026F 09 dad b
0270 CE00 aci 0
0272 4F mov c,a
0273 D25202 jnc readc
0276 C33C02 jmp readcom

endrd :
; end of read , restore value in a

0279 C630 adi '0' ;command
027b FEGI cpi ' a ' ;itranslate case?
027D DB rc

; lower case , mask lower case bits
027E E65F ani 101$1lllb
0280 C9 ret ;return with value in chl

;************************************
;* *
;* string data area for console messages *
;* *
;************************************
badver:

0281 736F727279 db ' Sorry, you need cP/m version 3$'
nospace :

02a0 6E6F206469 db 'n0 directory space$'
datmsg :

02b3 7479706520 db 'type data: $'
errmsg :

02bF 6572726F72 db ' error, try again,$'

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

Prompt:
02D1 6E65787420 db 'next command? $'

entmsg :
02E0 656E746572 db 'enter filename: $'

;******************************
;* *
;* fixed and variable data area*
;* *
;******************************

02F1 21 conbuf: db conlen ;length of console buffer
02F2 consiz: ds 1 ;resulting size after read
02F3 conlin: ds 32 ;length 32 buffer
0021 = conlen equ $-consiz

pfncb :
0313 F302 dW conlin
0315 5C00 dw fcb
0317 ds 32 ;i16 level Stack

stack :
0337 end

 You could make the following major improvements to this program to enhance its
 operation. With some work, this program could evolve into a simple data base
 management system. You could, for example, assume a standard record size of 128
 bytes, consisting of arbitrary fields within the record. You could develop a program
 called GETKEY that first reads a sequential file and extracts a specific field defined
 by the operator. For example, the command
 GETKEY NAMES*DAT LASTNAME 10 20
 would cause GETKEY to read the data base file NAMES.DAT and extract the
 "LASTNAME" field from each record, starting at position 10 and ending at charac-
 ter 20. GETKEY builds a table in memory consisting of each particular LASTNAME
 field, along with its 16-bit record number location within the file. The GETKEY
 program then sorts this list and writes a new file, called LASTNAME.KEY. This list,
 sometimes called an inverted index, is an alphabetical list of LASTNAME fields with
 their corresponding record numbers.
 You could rename the program shown above to QUERY, and modify it so that it
 reads a sorted key file into memory. The command line might appear as
 QUERY NAMES.DAT LASTNAME.KEY

4-19

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

 Instead of reading a number, the QUERY program reads an alphanumeric string
 which is a particular key to find in the NAMES.DAT data base. Because the LAST-
 NAME.KEY list is sorted, you can find a particular entry quickly by performing a
 binary search, similar to looking up a name in the telephone directory. Start at both
 ends of the list and examine the entry halfway in between and, if not matched, split
 either the upper half or the lower half for the next search. You will quickly reach the
 item you are looking for, in log2(n) steps, where you will find the corresponding
 record number. Fetch and display this record at the console as the program illustrates.
 At this point, you are just getting started. With a little more work, you can allow
 a fixed grouping size, which differs from the 128-byte record shown above. You can
 accomplish this by keeping track of the record number as well as the byte offset
 within the record. Knowing the group size, you can randomly access the record
 containing the proper group, offset to the beginning of the group within the record,
 and read sequentially until the group size has been exhausted.
 Finally, you can improve QUERY considerably by allowing Boolean expressions
 that compute the set of records that satisfy several relationships, such as a LAST-
 NAME between HARDY and LAUREL and an AGE less than 45. Display all the
 records that fit this description. Finally, if your lists are getting too big to fit into
 memory, randomly access your key files from the disk as well.
 4.4 Construction of an RSX Program
 This section describes the standard prefix of a Resident System Extension (RSX)
 and illustrates the construction of an RSX with an example. (See Section 1.6.4 for a
 discussion of how RSXs operate under CP/M 3.) RSX programs are usually written
 in assembler, but you can use other languages if the interface between the language
 and the calling conventions of the BDOS are set up properly.

4-20

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

 4.4.1 The RSX Prefix
 The first 27 bytes of an RSX program contain a standard data structure called the
 RSX prefix. The RSX prefix has the following format:

serial:
 d b 0,0,0,0,0,0
 start:.
 jmp ftest ; start of Program
 n e x t :
 db 0c3h ; jump instruction to
 dw 0 ; next module in line
 Prev:

 dw 0 ; Previous module
 remove:
 db 0ffh ; remove flag
 nonbank:
 db 0 ; nonbank flag
 name:
 db '123456713' ; any B-character name
 loade r :
 db 0 ; loader flag
 db 0,0 ; reserved area
 The only fields of the RSX prefix that you must initialize are the remove: flag, the
 nonbank: flag, and the name: of the RSX.
 For compatibility with previous releases of CP/M, the serial: field of the prefix is
 set to the serial number of the operating system by the LOADER module when the
 RSX is loaded into memory. Thus, the address in location 6 locates the byte follow-
 ing the serial number of the operating system with or withou; RSXs in memory.
 The start: field contains a jump instruction to the beginning of the RSX code
 where the RSX tests to see if this BDOS function call is to be intercepted or passed
 on to the next module in line.
 The next: field contains a jump instruction to the next module in the chain or the
 LOADER module if the RSX is the oldest one in memory. The RSX program must
 make its own BDOS function calls by calling the next: entry point.

4-21

4.4 Construction of an RSX Program CP/M 3 Programmer's Guide

 The prev: field contains the address of the preceding RSX in memory or location 5
 if the RSX is the first RSX in the chain.
 The remove: field controls whether the RSX is removed from memory by the next
 call to the LOADER module via BDOS function 59. If the remove: flag is OFFH, the
 LOADER removes the RSX from memory. Note that the CCP always calls the
 LOADER module during a warm start operation. An RSX that remains in memory
 past warm start because its remove: flag is zero, must set the flag at its termination
 to ensure its removal from memory at the following warm start.
 The nonbank: field controls when the RSX is loaded. If the field is OFFH, the
 LOADER only loads the module into memory on nonbanked CP/M 3 systems.
 Otherwise, the RSX is loaded into memory under both banked and nonbanked ver-
 sions of CP/M 3.
 The loader: flag identifies the LOADER RSX. When the LOADER module loads
 an RSX into memory, it sets this prefix flag of the loaded RSX to zero. However, the
 loader: flag in the LOADER's prefix contains OFFH. Thus, this flag identifies the last
 RSX in the chain, which is always the LOADER.
 4.4.2 Example of RSX Use
 These two sample programs illustrate the use of an RSX program. The first
 program, CALLVERS, prints a message to the console and then makes a BDOS
 Function 12 call to obtain the CP/M 3 version number. CALLVERS repeats this
 sequence five times before terminating. The second program, ECHOVERS, is an RSX
 that intercepts the BDOS Function 12 call made by CALLVERS, prints a second
 message, and returns the version 0031H to CALLVERS. Although this example is
 simple, it illustrates BDOS function interception, stack swapping, and BDOS function
 calls within an RSX.

4-22

4.4 Construction of an RSX Program CP/M 3 Programmer's Guide

; CALLVERS program
0005 = bdos equ 5 ; entrY point for BDOS
000B = prtstr equ B ; print string funCtion
000C = vers equ 12 ; get version function
000D = cr equ 0dh ; carriage return
000A = lf equ 0ah ; line feed
0100 org l00h
0100 1605 mvi d,5 ; Perform 5 times
0102 DS loop: push d ; save counter
0103 0E0B mvi c,Prtstr
0105 111e01 lxi d,call$msg ; Print call message
oioe CD0500 call bdos
0l0B 0E0C mvi c,vers
0l0D CD0500 call bdos ; try to get version *

; CALLVERS will intercept
0110 7D mov a,l
0111 323401 sta curvers
0114 d1 pop d
0115 15 dcr d ; decrement counter
0116 C20201 Jnz loop
0119 0E00 mvi c,0
0llB C30500 JmP bdos

call $msg:
011C 0D0A2A2A2A db cr,lf,'**** CALLVERS **** $'
0134 00 curvers db 0
0135 end
; ECHOVERS RSX
000B = pstring equ 9 ; string Print function
000D = cr equ 0dh
000A = lf equ 0ah

; RSX PREFIX STRUCTURE
0000 0000000000 db 0,0,0,0,0,0 ; room for serial number
0006 C3lB00 Jmp ftest ; begin of Program
0005 C3 next: db 0c3H ; Jump
000A 0000 dw 0 ; next module in line
000C 0000 prev: dw 0 ; previous module
000c FF remov: db 0ffh ; remove flag set
000F 00 nonbnk: db 0
0010 4543484F56 db 'ECHOVERS'
0018 000000 db 0,0,0

4-23

Construction of an RSX Program CP/M 3 Programmer's Guide

ftest: ; is this function 12?
001B 79 mov a,c
001C FE0C cpi 12
001E CA2400 Jz begin ; Yes - intercept
0021 C30500 Jmp next ; some other function

begin:
0024 210000 lxi h,0
0027 39 dad sp ; save stack
0028 225400 shld ret$stack
002B 317600 lxi sp,loc$stack
002E 0E05 mvi c,pstring
0030 113E00 lxi d,test$msg ; Print message
0033 CD0900 call next ; call BDDS
0036 2A5400 lhld ret$stack ; restore user stack
0039 F9 sphl
003A 213100 lxi h,0031h ; return version number
003D C9 ret

test$msg:
003E 0D0A2A2A2A db cr,lf,'**** ECHDVERS ****$'

ret$stack:
0054 0000 dw 0
0056 ds 32 ; 16 level stack

loc$stack :
0076 end

4-24

Construction of an RSX Program CP/M 3 Programmer's Guide

 You can prepare the above programs for execution as follows:
 1. Assemble the CALLVERS program using MAC as follows:
 MAC CALLVERS
 2. Generate a COM file for CALLVERS with HEXCOM:
 HEXCOM CALLVERS
 3. Assemble the RSX program ECHOVERS using RMAC:
 RMAC ECHOYERS
 4. Generate a PRL file using the LINK command:
 LINK ECHOVERS [OPI
 S. Rename the PRL file to an RSX file:
 RENAME ECHOVERS*RSX=ECHOVERS.PRL
 6. Generate a COM file with an attached RSX using the GENCOM command:
 GENCOM CALLVERS ECHOVERS
 7. Run the CALLVERS.COM module:
 CALLVERS
 The message
 **** CALLVERS
 followed by the message
 **** ECHOVERS ****
 appears on the screen five times if the RSX program works.

End of Section 4

4-25

Construction of an RSX Program CP/M 3 Programmer's Guide

Appenix A

System Control Block

 The System Control Block (SCB) is a CP/M 3 data structure located in the BDOS.
 CP/M 3 uses this region primarily for communication between the BDOS and the
 BIOS. However, it is also available for communication between application pro-
 grams, RSXS, and the BDOS. Note that programs that access the System Control
 Block are not version independent. They can run only on CP/M 3.
 The following list describes the fields of the SCB that are available for access by
 application programs and RSXS. The location of each field is described as the offset
 from the start address of the SCB (see BDOS Function 49). The RW/RO column
 indicates if the SCB field is Read-Write or Read-Only.
 Table A-1. SCB Fields and Definitions
 Offset RW/RO Definition
 00 - 04 RO Reserved for system use.
 05 RO BDOS Version Number.
 06 - 09 RW Reserved for user use. Use these four bytes for your
 own flags or data.
 0A - 0F RO Reserved for system use.
 10 - 11 RW Program Error Return Code. This 2-byte field can be
 used by a program to pass an error code or value to a
 chained program. CP/M 3's conditional command facil-
 ity also uses this field to determine if a program exe-
 cutes successfully. The BDOS Function 108 (Get/Set
 Program Return Code) is used to get/set this value.
 12 - 19 RO Reserved for system use.

A-1

Table A-1. (continued)
 Offset RW/RO Definition
 1A RW Console Width. This byte contains the number of col-
 umns, characters per line, on your console relative to
 zero. Most systems default this value to 79. You can
 set this default value by using the GENCPM or the
 DEVICE utility. The console width value is used by the
 banked version of CP/M 3 in BDOS function 10,
 CP/M 3's console editing input function. Note that typ-
 ing a character into the last position of the screen, as
 specified by the Console Width field, must not cause
 the terminal to advance to the next line.
 1B RO Console Column Position. This byte contains the cur-
 rent console column position.
 1C RW Console Page Length. This byte contains the page length,
 lines per page, of your console. Most systems default
 this value to 24 lines per page. This default value may
 be changed by using the GENCPM or the DEVICE util-
 ity (see the CPIM Plus (CPIM Version 3) Operating
 System User's Guide).
 1D - 21 RO Reserved for system use.
 22 - 2B RW Redirection flags for each of the five logical character
 devices. If your system's BIOS supports assignment of
 logical devices to physical devices, you can direct each
 of the five logical character devices to any combination
 of up to 12 physical devices. The 16-bit word for each
 device represents the following:
 Each bit represents a physical device where bit 15 cor-
 responds to device zero and bit 4 corresponds to device
 11. Bits zero through 3 are reserved for system use.
 You can redirect the input and output logical devices
 with the DEVICE command (see CP/M Plus (CP/M
 Version 3) Operating System User's Guide).

A-2

Appendix A System Control Block CP/M 3 Programmer's Guide

Table A-1. (continued)
 Offset RW/RO Definition
 22 - 23 RW CONIN Redirection Flag.
 24 - 25 RW CONOUT Redirection Flag.
 26 - 27 RW AUXIN Redirection Flag.
 28 - 29 RW AUXOUT Redirection Flag.
 2A - 2B RW LSTOUT Redirection Flag.
 2C RW Page Mode. If this byte is set to zero, some CP/M 3
 utilities and CCP built-in commands display one page
 of data at a time; you display the next page by pressing
 any key. If this byte is not set to zero, the system dis-
 plays data on the screen without stopping. To stop and
 start the display, you can press CTRL-S and CTRL-Q,
 respectively.
 2D RO Reserved for system use.
 2E RW Determines if CTRL-H is interpreted as a rub/del char-
 acter. If this byte is set to 0, then CTRL-H is a back-
 space character (moves back and deletes). If this byte is
 set to OFFH, then CTRL-H is a rub/del character, echoes
 the deleted character.
 2F RW Determines if rub/del is interpreted as CTRL-H charac-
 ter. If this byte is set to 0, then rub/del echoes the deleted
 character. If this byte is set to OFF, then rub/del is inter-
 preted as a CTRL-H character (moves back and deletes).
 30 - 32 RO Reserved for system use.
 33 - 34 RW Console Mode. This is a 16-bit system parameter that
 determines the action of certain BDOS Console I/O
 functions. (See Section 2.2.1 and BDOS Function 109,
 Get/Set Console Mode, for a thorough explanation of
 Console Mode.)

A-3

Appendix A System Control Block CP/M 3 Programmer's Guide

+Table A-1. (continued)
 Offset RW/RO Definition
 35 - 36 RO Reserved for system use.
 37 RW Output delimiter character. The default output delim-
 iter character is $, but you can change this value by
 using the BDOS Function 110, Get/Set Output Delimiter.
 38 RW List Output Flag. If this byte is set to 0, console output
 is not echoed to the list device. If this byte is set to 1
 console output is echoed to the list device.
 39 - 3B RO Reserved for system use.
 3C - 3D RO Current DMA Address. This address can be set by BDOS
 Function 26 (Set DMA Address). The CCP initializes
 this value to 0080H. BDOS Function 13, Reset Disk
 System, also sets the DMA address to 0080H.
 3E RO Current Disk. This byte contains the currently selected
 default disk number. This value ranges from 0-15 cor-
 responding to drives A-P, respectively. BDOS Function
 25, Return Current Disk, can be used to determine the
 current disk value.
 3F - 43 RO Reserved for system use.
 44 RO Current User Number. This byte contains the current
 user number. This value ranges from 0-15. BDOS Func-
 tion 32, Set/Get User Code, can change or interrogate
 the currently active user number.
 45 - 49 RO Reserved for system use.
 4A RW BDOS Multi-Sector Count. This field is set by BDOS
 Function 44,, Set Multi-Sector Count.

A-4

Appendix A System Control Block CP/M 3 Programmer's Guide

Table A-1. (continued)
 Offset RW/RO Defint.tion
 4B RW BDOS Error Mode. This field is set by BDOS Function
 45, Set BDOS Error Mode.
 If this byte is set to OFFH, the system returns to the
 current program without displaying any error messages.
 If it is set to OFEH, the system displays error messages
 before returning to the current program. Otherwise, the
 system terminates the program and displays error mes-
 sages. See description of BDOS Function 45, Set BDOS
 Error Mode, for discussion of the different error modes.
 4C - 4F RW Drive Search Chain. The first byte contains the drive
 number of the first drive in the chain, the second byte
 contains the drive number of the second drive in the
 chain, and so on, for up to four bytes. If less than four
 drives are to be searched, the next byte is set to OFFH
 to signal the end of the search chain. The drive values
 range from 0-16, where 0 corresponds to the default
 drive, while 1-16 corresponds to drives A-P, respec-
 tively. The drive search chain can be displayed or set
 by using the SETDEF utility (see CPIM Plus (Version 3)
 Operating System User's Guide).
 50 RW Temporary File Drive. This byte contains the drive
 number of the temporary file drive. The drive number
 ranges from 0-16, where 0 corresponds to the default
 drive, while 1-16 corresponds to drives A-P, respectively.
 51 RO Error drive. This byte contains the drive number of the
 selected drive when the last physical or extended error
 occurred.
 52 - 56 RO Reserved for system use.

A-5

Appendix A System Control Block CP/M 3 Programmer's Guide

Table A-1. (continued)
 Offset RW/RO Definition
 57 RO BDOS Flags. Bit 7 applies to banked systems only. If
 bit 7 is set, then the system displays expanded error
 messages. The second error line displays the function
 number and FCB information. (See Section 2.3.13).
 Bit 6 applies only to nonbanked systems. If bit 6 is set,
 it indicates that GENCPM has specified single alloca-
 tion vectors for the system. Otherwise, double alloca-
 tion vectors have been defined for the system. Function
 98, Free Blocks, returns temporarily allocated blocks to
 free space only if bit 6 is reset.
 58 - 59 RW Date in days in binary since 1 Jan 78.
 5A RW Hour in BCD (2-digit Binary Coded Decimal).
 5B RW Minutes in BCD.
 5C RW Seconds in BCD.
 5D - 5E RO Common Memory Base Address. This value is zero for
 nonbanked systems and nonzero for banked systems.
 5F - 63 RO Reserved for system use.

End of Appendix A

A-6

Appendix A System Control Block CP/M 3 Programmer's Guide

Appendix B

PRL File Generation

 B. 1 PRL Format
 A Page Relocatable Program has an origin offset of 100H bytes that is stored on
 disk as a file of type PRL. The format is shown in Table B-1.
 Table B-1. PRL File Format
 Address Contents
 000 1-0002H Program size
 0004-0005H Minimum buffer requirements (additional memory)
 0006-00FFH Currently unused, reserved for future allocation
 0100 + Program size = Start of bit map

 The bit map is a string of bits identifying those bytes in the source code that
 require relocation. There is one byte in the bit map for every 8 bytes of source code.
 The most significant bit, bit 7, of the first byte of the bit map indicates whether or
 not the first byte of the source code requires relocation. If the bit is on, it indicates
 that relocation is required. The next bit, bit 6, of the first byte corresponds to the
 second byte of the source code, and so forth.

B-1

 B.2 Generating a PRL
 The preferred technique for generating a PRL file is to use the CP/M LINK-80",
 which can generate a PRL file from a REL relocatable object file. This technique is
 described in the Programmer's Utilities Guide for The CPIM Family of Operating
 Systems. A sample link command is shown below.
 A>Iink dump[op]

End of Appendix B

B-2

Appendix B PRL Generation CP/M 3 Programmer's Guide

Appendix C

SPR Generation

 System Page Relocatable, SPR, files are similar in format to PRL files except that
 SPR files have an origin offset of 0000H (see Appendix B). SPR Files are provided as
 part of the standard CP/M 3 System: the resident and banked portions of the banked
 BDOS, named RESBDOS3.SPR and BNKBDOS3.SPR, and the nonbanked BDOS,,
 named BDOS3.SPR. The customized BIOS must also be generated in SPR format
 before GENCPM can create a CP/M 3 system. The BIOS SPR file is named
 BNKBIOS3.SPR for banked systems and BIOS3.SPR for nonbanked systems. A detailed
 discussion of the generation of BIOS3.SPR or BNK-BIOS3.SPR is provided in the
 CPIM Plus (CP/M Version 3) Operating System System Guide.
 The method of generating an SPR is analogous to that of generating a Page Relo-
 catable Program (described in Appendix B) with the following exceptions:
 o If LINK-80 is used, the output file of type SPR is specified with the [os] or [b]
 option. The [b] option is used when linking BNKBIOS3.SPR.
 o Tne code in the SPR is ORGed at 000H rather than 100H.

 End of Appendix C

C-1

Appendix D

ASCII and Hexadecimal Conversions

 This appendix contains tables of the ASCII symbols, including their binary, deci-
 mal, and hexadecimal Conversions.
 Table D-1. ASCII Symbols
 Symbol Meaning Symbol Meaning
 ACK acknowledge FS file separator
 BEL bell GS group separator
 BS backspace HT horizontal tabulation
 CAN cancel LF line-feed
 CR carriage return NAK negative acknowledge
 DC device control NUL null
 DEL delete RS record separator
 DLE data link escape SI shift in
 EM end of medium SO shift out
 ENQ enquiry SOH start of heading
 EOT end of transmission SP space
 ESC escape STX start of text
 ETB end of transmission SUB substitute
 ETX end of text SYN synchronous idle
 FF form-feed US unit separator
 VT vertical tabulation

D-1

Table D-2. ASCII Conversion Table
 Binary Decimal Hexadecimal ASCII
 0000000 000 00 NUL
 0000001 001 01 SOH (CTRL-A)
 0000010 002 02 STX (CTRL-B)
 0000011 003 03 ETX (CTRL-C)
 0000100 004 04 EOT (CTRL-D)
 0000101 005 05 ENQ (CTRL-E)
 0000110 006 06 ACK (CTRL-F)
 0000111 007 07 BEL (CTRL-G)
 0001000 008 08 BS (CTRL-H)
 0001001 009 09 HT (CTRL-I)
 0001010 010 0A LF (CTRL-J)
 0001011 011 0B VT (CTRL-K)
 0001100 012 0C FF (CTRL-L)
 0001101 013 0D CR (CTRL-M)
 0001110 014 0E SO (CTRL-N)
 0001111 015 0F SI (CTRL-0)
 0010000 016 10 DLE (CTRL-P)
 0010001 017 11 DC1 (CTRL-Q)
 0010010 018 12 DC2 (CTRL-R)
 0010011 019 13 DC3 (CTRL-S)
 0010100 020 14 DC4 (CTRL-T)
 0010101 021 15 NAK (CTRL-U)
 0010110 022 16 SYN (CTRL-V)
 0010111 023 17 ETB (CTRL-W)
 0011000 024 18 CAN (CTRL-X)
 0011001 025 19 EM (CTRL-Y)
 0011010 026 1A SUB (CTRL-Z)
 0011011 027 IB ESC (CTRL-[)
 0011100 028 1C FS (CTRL- \)
 0011101 029 1D GS (CTRL-1)
 0011110 030 1E RS (CTRL--)
 0011111 031 1F US (CTRL-_)
 0100000 032 20 (SPACE)
 0100001 033 21 !
 0100010 034 22 '
 0100011 035 23 #
 0100100 036 24 $

D-2

Appendix D : ASCII and HEX Conversions CP/M 3 Programmer's Guide

Table D-2. (continued) ersions

 Binary Decimal Hexadecimal ASCII
 0100101 037 25 %
 0100110 038 26 &
 0100111 039 27 '
 0101000 040 28 (
 0101001 041 29)
 0101010 042 2A *
 0101011 043 2B +
 0101100 044 2C ,
 0101101 045 2D -
 0101110 046 2E .
 0101111 047 2F /
 0110000 048 30 0
 0110001 049 31 1
 0110010 050 32 2
 0110011 051 33 3
 0110100 052 34 4
 0110101 053 35 5
 0110110 054 36 6
 0110111 05S 37 7
 0111000 056 38 8
 0111001 057 39 9
 0111010 058 3A :
 0111011 059 3B ;
 0111100 060 3C <
 0111101 061 3D =
 0111110 062 3E >
 0111111 063 3F ?
 1000000 064 40 @
 1000001 065 41 A
 1000010 066 42 B
 1000011 067 43 C
 1000100 068 44 D
 1000101 069 45 E
 1000110 070 46 F
 1000111 071 47 G
 1001000 072 48 H
 1001001 073 49 I

D-3

Appendix D : ASCII and HEX Conversions CP/M 3 Programmer's Guide

Table D-2. (continued)
 Binary Decimal Hexadecimal ASCII
 1001010 074 4A J
 1001011 075 4B K
 1001100 076 4C L
 1001101 077 4D M
 1001110 078 4E N
 1001111 079 4F O
 1010000 080 50 P
 1010001 081 51 Q
 1010010 082 52 R
 1010011 083 53 S
 1010100 084 54 T
 1010101 085 55 U
 1010110 086 56 V
 1010111 087 57 W
 1011000 088 58 X
 1011001 089 59 Y
 1011010 090 SA Z
 1011011 091 5B [
 1011100 092 5C \
 1011101 093 5D]
 1011110 094 5E ^
 1011111 095 5F <
 1100000 096 60 '
 1100001 097 61 a
 1100010 098 62 b
 1100011 099 63 c
 1100100 100 64 d
 1100101 101 65 e
 1100110 102 66 f

D-4

Appendix D : ASCII and HEX Conversions CP/M 3 Programmer's Guide

Table D-2. (continued)
 Binary Decimal Hexadecimal ASCII
 1100111 103 67 g
 1101000 104 68 h
 1101001 105 69 i
 1101010 106 6A j
 1101011 107 6B k
 1101100 108 6C I
 1101101 109 6D m
 1101110 110 6E n
 1101111 111 6F o
 1110000 112 70 p
 1110001 113 71 q
 1110010 114 72 r
 1110011 115 73 s
 1110100 116 74 t
 1110101 117 75 u
 1110110 118 76 v
 1110111 119 77 w
 1111000 120 78 x
 1111001 121 79 y
 1111010 122 7A z
 1111011 123 7B {
 1111100 124 7C |
 1111101 125 7D }
 1111110 126 7E ~
 1111111 127 7F DEL

End of Appendix D

D-5

Appendix D : ASCII and HEX Conversions CP/M 3 Programmer's Guide

Appendix E

BDOS Function Summary

 Table E-1. BDOS Function Summary
 Function Function Name Input Parameters Returned Values
 0 System Reset none none
 1 Console Input none A = Char
 2 Console Output E = char A = 00H
 3 Auxiliary Input none A = char
 4 Auxiliary Output E = char A = 00H
 5 List Output E = char A = 00H
 6 Direct Console I/O E = 0FFH/ A = char/status/
 0FEH/ none
 0FDH/
 char
 7 Auxiliary Input none A = 00/0FFH
 Status
 8 Auxiliary Output none A = 00/0FFH
 Status
 9 Print String DE = .String A = 00H
 10 Read Console Buffer DE = .Buffer0 Characters in buffer
 11 Get Console Status none A = 00/01
 12 Return Version Number none HL = Version (0031H)
 13 Reset Disk System none A = 00H
 14 Select Disk E = Disk A = Err Flag
 Number
 15 Open File DE = FCB A = Dir Code
 16 Close File DE = FCB A = Dir Code
 17 Search for First DE = FCB A = Dir Code
 18 Search for Next none A = Dir Code
 19 Delete File DE = FCB A = Dir Code
 20 Read Sequential DE = FCB A = Err Code
 21 Write Sequential DE = FCB A = Err Code
 22 Make File DE = FCB A = Dir Code
 23 Rename File DE = FCB A = Dir Code
 24 Return Login Vector none HL = Login Vector
 25 Return Current Disk none A = Cur Disk#

E-1

Table E-1. (continued)
 Function Function Name Input Parameters Returned Values
 25 Return Current Disk none A = Cur Disk#
 26 Set DMA Address DE = . DMA A = 00H
 27 Get Addr(Alloc) none HL = Alloc
 28 Write Protect Disk none A = 00H
 29 Get R/O Vector none HL = R/0 Vector
 30 Set File Attributes DE = .FCB A = Dir Code
 31 Get Addr(DPB) none HL = DPB
 32 Set/Get User Code E = 0FFH/ A = Curr User/00H
 user number
 33 Read Random DE = .FCB A = Err Code
 34 Write Random DE = .FCB A = Err Code
 35 Compute File Size DE = .FCB r0, rl, r2
 A = Err Flag
 36 Set Random Record DE = .FCB r0, rl, r2
 37 Reset Drive DE = Drive A = 00H
 Vector
 38 Access Drive none A = 00H
 39 Free Drive none A = 00H
 40 Write Random with DE = .FCB A = Err Code
 Zero Fill
 41 Test and Write Record DE = FCB A = 0FFH
 42 Lock Record DE = ..FCB A = 00H
 43 Unlock Record DE = .FCB A = 00H
 44 Set Multi-sector Count E = # Sectors A = Return Code
 45 Set BDOS Error Mode E = BDOS Err A = 00H
 Mode
 46 Get Disk Free Space E = Drive Number of Free Sectors
 number A = Err Flag
 47 Chain to Program E = Chain Flag A = 00H
 48 Flush Buffers E = Purge Flag A = Err Flag
 49 Get/Set System DE = .SCB PB A = Returned Byte
 Control Block HL = Returned Word
 50 Direct BIOS Calls DE = .BIOS PB BIOS Return
 59 Load Overlay DE = .FCB A = Err Code
 60 Call Resident System DE = .RSX PB A = Err Code
 Extension
 Note: . indicates the address of

E-2

Appendix E : BDOS Function Summary CP/M 3 Programmer's Guide

Table E-1. (continued)
 Function I Function Name Input Parameters Returned Values

 98 Free Blocks none A = Err Flag
 99 Truncate File DE = .FCB A = Dir Code
 100 Set Directory Label DE = .FCB A = Dir Code
 101 Return Directory E = Drive A = Dir label data byte
 Label Data
 102 Read File Date Stamps DE = .FCB A = Dir Code
 and Password Mode
 103 Write File XFCB DE = .FCB A = Dir Code
 104 Set Date and Time DE = .DAT A = 00H
 105 Get Date and Time DE = .DAT Date and Time
 A = seconds
 106 Set Default Password DE = Password A = 00H
 107 Return Serial Number DE = .Serial Serial Number
 field
 108 Get/Set Program DE = 0FFFFH/ HL Program Ret Code
 Return Code Code none
 109 Get/Set Console Mode DE = 0FFFFH/ HL = ConsoleMode
 Mode none
 110 Get/Set Output DE = 0FFFFH/ A = OutputDelimiter
 Delimiter E = Delimiter none
 111 Print Block DE = .CCB A = 00H
 112 List Block DE = .CCB A = 00H
 152 Parse Filename DE = .PFCB See definition
 Note: . indicates the address of

End of Appendix E

E-3

Appendix E : BDOS Function Summary CP/M 3 Programmer's Guide

 ? in filename error, 2-30 Basic Disk operating System
 $$$ filetype, 1-27 See BDOS
 Basic Input/Output System
 A See BIOS
 basic record size, 2-7
 absolute module, 3-73 BDOS, 1-6, 1-8, 1-11, 1-14
 access calling conventions, 2-1
 date and time stamp, 3-21 Call Resident System
 stamp types, 2-24 Extension (RSX), 1-24
 ACCESS DRIVE, 3-57 chain to program call, 1-23
 address, maximumm, 1-5 directory codes, 2-32
 allocation vector, 2-27 , directory functions, 2-7
 3-41 , 3- 75 drive-related functions, 2-7
 ambiguous file reference, error codes, 2-31
 1-13, 2-16, 3-24, 3-27 error flags, 2-33
 archive attribute, 2-17 error mode, 2-29
 ASCII character file, 1-18 extended error codes, 2-34
 ASM , 2-11 file access functions, 2-7
 assembler source, 2-11 file system, 2-7, 2-11
 associated command files, 1-18 miscellaneous functions, 2-7
 asterisk, 1-13, 2-11 physical errors, 2-34
 attribute bits, 2-16 read character, 2-3
 attributes write character, 2-3
 set file, 2-22 BDOS_base, 1-8 to 1-11
 automatic submit, 1-19 bell character, 3-12
 Auxiliary Input, 3-4 binary zero terminator, 3-12
 Auxiliary Input Status, 3-9 BIOS, 1-6, 1-7, 1-14, 2-29
 Auxiliary Output, 3-5 cold start, 1-15
 Auxiliary Output Status, 3-10 DEVRBL entry point, 2-2
 AUXIN, 2-2, 2-6, 3-4, 3-9 entry points, 1-7
 AUXO(JT, 2-2, 2-6, 3-5, 3-10 Parameter Block, 3-72
 warm start, 1-15
 B BIOS_base, 1-8, 1-10, 1-15
 BIOSPB, 3-72
 backspace, 3-2 bit map, B-1
 BAK, 2-11 bit vector, 3-43
 Bank 0, 1-3 blocking, record, 3-63
 in context, 1-3 block size, 2-11
 switched in, 1-3 Boolean fields, 2-16
 Bank 1, 1-3, 1-4 buffers, 1-4
 banked, 1-2, 1-11 disk, 1-2
 memory, 1-3 built-in command, 1-8, 1-16
 operating system module, 1-3 byte, 2-1

Index-1

Index

 system, 1-3 byte count, 2-28
 version requirements, 1-5
 bank-switching, 1-4 C
 bank-switched memory, 1-1, 1-3
 BAS, 2-11 Call BIOS, 1-22
 base address, 1-21 Call Resident System
 base extent, 3-48, 3-50 Extension (RSX), 3-74
 basic console I/O, 2 -3
 calling program, 2-15 input, 2-3, 3-2
 return to, 2-28 output, 2-3, 3-3
 carriage return, 2-13, 3-2 page length, 3-70
 CCB, 3-94, 3-95 status, 2-3, 3-8
 CCP string output, 2-3
 description 1-7, 1-8, width, 3-70
 1-11, 1-13 Console Command Processor,
 location, 1-6, 1-15 See CCP
 operation, 1-16 to 1-28 Console Input, 3-2
 user number, 2-18 Console Mode, 2-5, 3-91
 CCP.COM, 1-15 default state, 3-2
 CCP command form, 1-16 Console Output, 3-3
 chain flag, 3-67 control character ('), 2-5
 Chain To Program, 3-67 COPY, 4-1
 change default drive, 1-16 copy file, 1-12, 4-1
 character block, 2-2 CP/M, 1-1, 1-2
 Character Control Block CP/M 2, 1-28, 2-1
 See CCB CPM3.SYS file, 1-14
 character echo, 2-3 CPMLDR, 1-14, 1-15
 character string, 2-2 CPMLDR BDOS, 1-14
 check-sum vector, 2 -27 CPU registers, 1-22
 Close File, 2-17, 3 -2 2 cr field, 3-29, 3-31, 3-34
 cold boot, 1-14 create
 Cold Boot Loader, 1-14 date and time stamp, 3-35
 cold start, 1-14, 1-15, 1-16 directory entry, 3-34
 COM, 2-11 directory label, 3-78
 filetype, 1-19 stamp types, 2-24
 command, XFCB, 3- 34
 drive field, 2-37 CTRL-A, 3-14
 field, 1-20 CTRL-B, 3-14
 keyword, 1-17 CTRL-C, 1-22, 2-4, 2-5,
 Command File, 2-11 3-13, 3-14
 command line, 1-17 reboot, 3-13
 characters, 2-38 CTRL-E, 3-13, 3-14, 3-15
 command tail, 1-16 end of line, 3-13

Index-2

Index

 parsing, 1-17 CTRL-F, 3-14
 common memory, 1-3, 1-5 CTRL-G, 2-4, 3-14
 base address, 3-71 CTRL-H, 3-2, 3-13, 3-14
 region, 1-3 backspace, 3-13
 common region, 1-3 CTRL-I, 3-2, 3- 3
 size, 1-5 CTRL-J, 3-13, 3-15
 compatibility, 1-22, 1-28 line feed, 3-13
 compatibility between CP/M 3 CTRL-K, 3-15
 and MP/M, 3-61, 3-62 CTRL-M, 3-13, 3-15
 Compute File Size, 2-28, 3-53 CTRL-P, 2-4, 2-5, 3-2, 3-3,
 conditional command, 1-23 3-13, 3-15
 conditional status, 2-6 list device, 3-13
 configured memory size, 1-7 CTRL-Q, 2-4 , 2-5, 3 -2, 3-3
 CONIN, 1-7, 2-2, 2-3, 3-2,, 3-16 CTRL-R, 3-13, 3-15
 CONOUT, 2-2, 2-3, 3-3 retype line, 3-13
 console, CTRL-S, 2-4, 2 -5, 3- 2, 3- 3
 block output, 2-3 CTRL-U, 3-13, 3-15
 characteristics, 1-27 remove line, 3-13
 column position, 3-70 CTRL-W, 3-15
 I/O functions, 2-3
 CTRL-X, 3-13, 3-15 functions, 2-8
 beginning of line, 3-13 hash tables, 1-2, 1-4
 CTRL-Z, 2-3, 2-13 space, 1-13
 curly brackets, 3-96 directory label, 2-19, 2-20,
 current record, 2-15 create, 3-78
 current record field of the data byte definition,
 FCB, 3-20 3-78, 3-80
 current record position, 2-36 password, 2-21
 current user number, 1-28 update, 3-78
 DIRLBL.RSX, 1-25, 2-21, 3-78
 D DIRSYS, 1-18
 disk, 1-11
 DAT, 2-11, 3-85 access, 1-12
 data change, 2-27
 area, 1-12, 1-13, 2-12 current, 3-71
 block, 2-11, 2-12, 3-75 default, 1-15, 3-19
 data base management system, directory area, 2-12
 4-19 drive organization, 1-12
 Data File, 2-11 formatting program, 1-22
 data tracks, I/O error, 2-28, 2-29
 directory area, 1-12 record buffers, 1-2, 1-4
 data area, 1-12 select, 2-29
 date and time stamping, 2-20 , space, 1-13

Index-3

Index

 2-23, 2-25, 3-35, Disk Parameter Block
 3-81, 3-85 (DPB), 3-46
 DATE utility, 2-25 Disk Reset, 2-27
 default DMA, 3-40
 disk, 1-15, 3-19 address, 3-71
 DMA buffer, 2-35 buffer, 2-35
 drive, 1-16, 1-28 default address, 2-38
 FCB, 2-37 DPB (Disk Parameter
 mode, 3-64 Block), 3-46
 output delimiter, 3-93 drive,
 password, 2-23, 3-87 access, 3-57
 Default Error Mode, 3-64 allocation vector, 2-27
 Delete File, 2-17, 2-22, 3- 27 capacity, 2-12
 delimiter, 1-17, 2-10, chain, 1-20
 3-11, 3-93 code, 2-14
 file specification, 3- 97 default, 1-16, 1-28
 DEVICE utility, 2-2 functions, 2-8
 differences: banked and read-only, 3-43
 nonbanked, 1-2 reset, 3-56
 DIR, 1-18 search chain, 3-71
 DIR.COM utility, 1-18 select code, 2-9,
 Direct BIOS Calls, 1-22, 3-72 specification, 1-17, 1-20
 Direct Console I/O, 3-7 specifier, 2-9
 Direct Memory Address support, 1-11
 (DMA), 3-40 drive-related functions,
 directory 2-7, 2-8
 area, 1-12 dump program, 4-5
 check-sum vector, 2-27 dynamic allocation, 1-13
 codes, 2-30, 2-32
 entries, 2-15
 E size, 1-12, 2-12, 3-53
 space allocation, 1-13
 ED Source Backup, 2-11 specification, 2-9
 edit control characters, types of, 2-11
 banked CP/M 3, 3-14 file access functions, 2-7
 nonbanked CP/M 3, 3-13 File Control Block
 empty directory entry, 2-16 See FCB
 end-of-file, 1-26, 2-3 default, 2-36
 entry values, 2-1 File Dump, 4-5
 environment, 1-7 File Exists error, 2-30
 ERASE, 1-18 filename, 1-13, 1-17, 2-9,
 errors, 2-30, 2-31 2-11, 2-15
 ? in filename, 2-30 ambiguous, 2-11

Index-4

Index

 extended, 2-29, 2-34 parse, 3-96
 file exists, 2-30 filespec, 1-17
 flag, 2-33 filetype, 1-13, 1-17, 2-9,
 handling, 2-28 2-11, 2-15
 invalid drive, 2-29 floppy disk, 1-11
 messages, 2-29, 2-30 Flush Buffers, 2-25,
 mode, 2-29, 3-64, 3-71 2-33, 3-68
 physical, 2-28, 2-29, 2-34 Free Blocks, 2-33, 3-75
 program code, 3-89 Free Drive, 3-58
 read-only, 2-30 free space, 1-13, 3-65
 return code, 3-70 Function Calls-.
 extend operating system 0: System Reset, 3-1
 functions, 1-9, 1-23 1: Console Input, 3-2
 extended error codes, 2-29, 2: Console Output, 3-3
 2-30, 2-34, 3: Auxiliary Input, 3-4
 extended FCB, 2-19 4: Auxiliary Output, 3-5
 extent 0, 3-48, 3-50 5: List Output, 3-6
 extent field format, 3-83 6: Direct console I/O, 3-7
 extent number, 2-14 7: Auxiliary Input Status,
 3-9
 F 8: Auxiliary Output Status,
 3-10
 false status, 2-6 9: Print String, 3-11
 FCB, 3-20 10: Read Console Buffer, 3-12
 default, 2-36, 2-37 11: Get Console Status, 3-16
 extent number field, 3-35 12: Return Version Number,
 format, 2-18, 3-98 3-17
 length, 2-13 13: Reset Disk System, 3-18
 parsed, 1-21 14: Select Disk, 3-19
 random record field, 3-55 15: Open File, 3-20
 field, 1-19 16: Close File, 3-22
 file 17: Search For First, 3-24
 access functions, 2-7 18: Search For Next, 3-26
 attributes, 2-16 19: Delete File, 3-27
 byte count, 2-28, 3-44 20: Read Sequential, 3-29
 directory elements, 2-15 21: Write Sequential, 3-31
 format, 2-13 22: Make File, 3-34
 ident if icat ion, 1 -1 2 23: Rename File, 3-36
 naming conventions, 2-11 24: Return Login Vector, 3-38
 organization, 2-11 25: Return Current Disk, 3-39
 passwords, 2-21 26: Set @ Address, 3-40
 password error, 2-30 27: Get ADDR(ALLOC), 3-41

Index-5

Index

 28: Write Protect Disk, 3-42 112: List Block, 3-95
 29: Get Read-Only Vector, 152: Parse Filename, 3-96
 3-43
 30: Set File Attributes, 3-44 G
 31: Get ADDR(DPB PARMS), 3-46
 3 2 : Set/Get User Code, 3-47 GENCOM, 1-9, 1-24, 2-6
 3 3: Read Random, 3-48 GENCPM, 1-2, 1-16
 34: Write Random, 3-50 generic filetypes, 2-11
 3 5: Compute File Size, 3-53 Get
 36: Set Random Record, 3- 55 ADDR(ALLOC), 2-34, 3-41
 3 7: Reset Drive, 3-56 ADDR(DPB PARMS), 3-46
 38: Access Drive, 3-57 COM, 1-24, 1-26
 39: Free Drive, 3-58 Console Status, 3-16
 40: Write Random with Zero Date and Time, 3- 86
 Fill, 3- 59 Disk Free Space, 2-33,
 41: Test and Write Record, 3-41, 3-65
 3-60 Output Delimiter, 3-93
 42: Lock Record, 3-61 Program Return Code, 3-89
 43- Unlock Record, 3-62 Read-Only Vector, 3-43
 44: Set Multi-Sector Count, RSX, 2-6
 3-63 .RSX, 1-24
 45: Set BDOS Error Mode, 3-64 User Code, 3-47
 46: Get Disk Free Space, 3-65 utility, 1-24, 1-26
 47: Chain To Program, 3-67 Get/Set
 48: Flush Buffers, 3-6B Console Mode, 2-5, 3-91
 49: Get/set system control Output Delimiter, 3-93
 Block, 3-69 Program Return Code,
 50: Direct BIOS Calls, 3-72 1-23, 3-89, 3-90
 5 9: Load Overlay, 3-73 System Control Block, 3-69
 60: Call Resident System User Code, 3-47
 Extension, 3-74 graphic characters, 3-2
 98: Free Blocks, 3-75
 99: Truncate File, 3-76 H
 100: Set directory Label,
 3-78 hash table, 1-4, 2-27
 101: Return Directory Label directory, 1-2
 Data, 3-80 HEX, 2-11
 102: Read File Date Stamps Hex Machine Code, 2-11
 and Password Mode, 3-81 highest memory address, 2-35
 103: Write File XFCB, 3-83 host computer's environment,
 104: Set Date and Time, 3-85 1-7
 105: Get Date and Time, 3-86

Index-6

Index

 106: Set Default Password, I
 3-87
 107: Return Serial Number, information address, 2-1
 3-88 INITDIR utility, 2-24, 3-79
 108: Get/set Program Return initializing an FCB, 2-15
 Code, 3-89 input buffer, 3-12
 109: Get/Set Console Mode, INT, 2-11
 3-91 Intel PL/M systems programming
 110: Get/Set Output language, 2-1
 Delimiter, 3-93 interface attribute, 2-17, 3-21
 111: Print Block, 3-94 Intermediate File, 2-11
 internal date and time, 3-85 maximum
 Invalid Drive error, 2-29 file size, 2-11
 invalid function calls, 2-1 memory, 1-2
 memory address, 1-10
 J record count, 3-53
 TPA address, 1-21
 jump instructions, 1-25 media change, 2-27
 memory, 1-2
 K banked, 1-3
 base address, 1-10
 key fields, 3-55 loading, 1-14
 logical, 1-5
 L map, 1-14
 maximum, 1-2
 length, 1-21, 2-23 minimum, 1-2
 line editing, 2-4 organization, 1-1, 1-2
 line feed, 2-13, 3-2 regions, 1-9, 1-10
 LINK-80 , B-2 size configured, 1-7
 List Block, 3-95 space, 1-2
 list device, 2-4, 3-2 top of, 1-10
 List Output, 3-6 miscellaneous functions, 2-7
 LOADER base, 1-9, 1-11 modify file attribute, 3-44
 LOADER module, 1-6, 1-9, 1-11, operating system
 1-21, 1-23, 1-24, functions, 1-9, 1-24
 3-73, 4-21 other functions, 2-5
 Load Overlay, 1-9, 1-24, 3-73 modules, 1-6
 load RSX, 1-9, 1-24 of operating system, 1-5
 Lock Record, 3-61 MP/M, 1-19, 1-28,
 MP/M, 3-61 2-1, 3-17
 logged-in, 2-27 multi-sector count, 2-26,
 logical, 3-29, 3-63, 3-71

 auxiliary input device, 2-2 Multi-Sector I/O, 2-26
Index-7

Index

 auxiliary output device, 2-2 multi-user operating system,
 AUXIN, 2-2 1-19, 1-28

 AUXOLJT, 2-2 multiple file reference, 1-13
 CONIN, 2-2
 CONOUT, 2-2 N
 console input device, 2-2
 console output device, 2-2 next record, 3-55
 device names, 2-2 nibble, 1-28
 drive, 1-11, 2-11, 2-12 nonbanked memory organization,
 list device, 3-6 1-2

 list output device, 2-2 nonbanked systems, 1-1
 LST, 2-2 nonsupported function number,
 memory organization, 1-5 2-1
 record size, 2-25 null byte, 3-67
 LST, 2-4, 2-6 null command file, 1-24
 LST:, 3-2, 3-6, 3-95
 O
 M
 OFFSET parameter, 3-69
 Make File, 2-15, 2-17, Open File, 2-16, 3-20
 2-21, 3-34 operating system modules,
 banked, 1-3,
 resident, 1-3
 output delimiter, 3-70, 3-93 printer echo, 2-4, 2-5, 3-2
 overlay, 3-73 printer listing, 2-11
 Print String, 3-11
 P PRL file, 1-19, 1-24,
 2-11, 3-73
 page, PRL File Format, B-1
 alignment, 1-10 PRN, 2-11
 boundaries, 1-10 PROFILE.SUB, 1-15
 mode, 3-70 PROFILE submit file, 1-15
 Page Relocatable file, 1-19, program chain, 1-23, 3-67
 1-24, 2-11 Program Return Code,
 Page Zero, 1-6, 1-7, 1-15, 1-23, 3-89
 1-21, 1-22, 1-25, 1-28 PUNCH, 2-6
 areas, 2-35 Purge Flag, 3-68
 fields, 1-21, 2-38
 initialize, 1-15, 2-34 to 2-38Q
 interface, 1-28
 Parameter Block question mark, 1-13, 2-11
 BIOS, 3-72
 RSX, 3-74 R

Index-8

Index

 SCB, 3-69 RANDOM, 4-10
 parameter substitutions, 1-27
 parse, random
 procedure, 1-19 access program, 4-10
 parsed FCB, 1-21 access processing, 4-11
 Parse Filename, 3-96 file, 2-12
 Partial Close, 2-17, 3-22 record, 3-55
 password, 1-17, 1-20, record number , 2-12, 2-15
 2-21, 3-83, record position, 2-36
 assign, 2-17 read
 default, 2-23, 3-87 character, 3-2
 field, 2-9, 2-10, 2-35 edited console input, 3-12
 length, 2-23, 2-35, 2-36 file date stamps and password
 mode, 3-81 mode, 3-81
 protection, 1-13, 2-22, 3-33 , next record, 3-29
 3-34, 3-87 Read Buffer Input, 2-4
 support, 1-1 Read Console Buffer, 3-12
 testing, 2-22 READER, 2-6
 Password Protection Modes, 2-22 Read File Date Stamps and
 permanent close operation, 3-22 Password Mode, 3-81
 physical Read-Only, 3-42
 drive, 1-11 attribute, 2-16
 error, 2-29, 3-33 Disk error, 2-30
 error codes, 2-34, 3-19, drives, 3-43
 3-21 , 3-25 File error, 2-30
 file size, 3-53 Read Random, 2-30, 3-48
 memory, 1-2 Read Sequential, 2-30,
 record size, 2-25 3-29, 3-48
 write operations, 2-25 Read-Write, 3-42
 PIP command, 1-12 record, 2-12, 3-60
 PIP utility, 2-17 blocking, 2-25, 3-63
 PL/I Source File, 2-11 count, 2-14
 PL/M, 2-1 deblocking, 2-25
 Print Block, 2-3, 3-94 lock , MP/M, 3-61
 Print String, 2-3, 2-5, 3-11 size, 2-7
 test, 3-60 S
 unlock, MP/M, 3-62
 write, 3-60 SCB, 1-27, 1-28, 3-69, 3-70
 redirected input, 1-27 SCB parameter block, 3-69
 region boundaries, 1-9 scroll, 3-2
 register, output, 2-4
 A, 2-31 support, 2-5
 entry values, 2-1 Search, 2-28
 pair, 2-1 Search and Delete, 2-16

Index-9

Index

 restoring values, 2-1 search chain, 1-20
 saving values, 2-1 Search For First, 3-24
 REL, 2-11 Search For Next, 3-24, 3-26
 Relocatable Module, 2-11, 3-73 sectors, 3-65
 relocation, B-1 Select Disk, 2-29, 2-33, 3-19
 remove sequential file, 2-12
 flag, 1-26 sequential I/O processing, 2-26
 last character, 3-13 serial device I/O, 2-2
 RSX, 1-26 serial number, 3-88
 RENAME, 1-18 Set
 Rename File, 3-36 BDOS Error Mode, 3-64
 Reset Disk System, 1-22, 3-18 Console Mode, 3-91
 Reset Drive, 2-27, 3-18, 3-56 Date and Time, 3-85
 resident operating system Default Password, 2-23, 3-87
 module, 1-3 Directory Label, 1-25,
 resident portion, 1-3 2-21, 2-22, 3-78
 Resident System Extension DMA Address, 3-40
 See RSX Error Mode, 2-29
 Resident System Extension File Attributes, 2-16, 2-17,
 program, 4-20 2-22, 2-28, 3-44
 Return file byte count, 2-17
 Current Disk, 3-39 Multi-Sector Count,
 Directory Label, 2-21 2-26, 3-63

 Directory Label Data, Output Delimiter, 3-93
 2- 33 , 3-80 Program Return Code, 3-89
 Error Mode, 3-64 Random Record, 3-55

 Login Vector, 3-38 User Code, 3-47
 Serial Number, 3-88 SETDEF utility, 1-19,
 Version Number, 3-17 1-20, 1-27
 return address, 1-21 Set/Get User Code, 3-47
 Return and Display Error Mode, SET parameter, 3-69
 3-64 SFCB, 2-23, 2-24, 3-79
 returned error codes, 2-31 SID Symbol File, 2-11
 RSX, 1-6, 1-11, 1-21, 1-23, sign-on message, 1-14
 1-25 ,3-74, 4-20 size
 active, 1-9 BDOS, 1-11
 attach, 1-9 common region, 1-5
 file format, 1-25 compute File BDOS, 3-53
 flags, 1-25 LOADER, 1-11
 header, 1-9, 1-21, 1-24, 3-73 record, 2-7
 nonbanked flag, 1-25 transient program, 1-11
 prefix, 4-21 source files, 2-13
 programs, 4-20 space
 remove flag, 1-25 disk, 3-65

Index-10

Index

 RSX Parameter Block, 3-74 sparse, 2-12
 rub/del, 3-13 sparse file, 2-12

 SPR, 2-11 Test and Write Record, 3-60
 standard CP/M command line, TEX, 2-11
 1-17 TEX Formatter Source, 2-11
 standard delete, 3-27 TPA, 1-6, 1-15, 1-21, 1-22
 standard search, 3-24 size, 1-11
 start scroll, 3-2 space, 1-21
 stop scroll, 3-2 transient commands, 1-8
 subfields, 2-24 transient program, 1-4 to 1-9,
 SUB filetype, 1-19 1-11 to 1-13, 1-18,
 submit 1-22, 2-7
 command line, 1-26 area, 1-6, 1-7
 file, 1-15, 1-18, size, 1-11
 1-20, 1-26 true status, 2-6
 SUBMIT, 1-19 Truncate File, 2-22, 3-76
 RSX, 1-27 TYPE, 1-18
 utility, 1-13, 1-26 types of file stamps, 2-24
 successful function, 2- 32
 SYM, 2-11 U
 SYS, 2-11
 SYS attribute, 1-18 Unlock Record, 3-62
 Sys. Page Reloc., 2-11 unsuccessful function, 2-32
 system update
 attribute, 1-18 date and time stamp,
 cold start, 1-11, 3- 35, 3- 50
 1-12, 1-13 directory label, 3-78
 communication, 1-7 stamp types, 2-24
 components, 1-5 user
 date and time, 2-24 code, 3-47
 generation, 1-14 command, 1-12
 interaction, 1-7 directories, 2-18
 modules, 1-5 number, 1-12, 1-15, 1-18,
 operation, 1-13 1-20, 1-28, 2-18, 3-47
 prompt, 1-13, 1-15, conventions, 2-18
 1-16, 1-28 current, 3-71
 regions, 1-5 zero, 1-20, 2-17, 2-18, 3-20
 tracks, 1-12, 1-14, 1-15 USER 1-18
 warm start, 1-11, 1-12, User 0, 2-18
 1-15, 1-25
 System Control Block, 1-27, V
 3-69, 3-70

Index-11

Index

 System File, 2-11 VALUE parameter, 3-69
 System Reset, 3-1 version-independent
 programming, 3-17
 T version number, 3-70
 virtual file size, 3-53
 tab characters, 3-2
 tab expansion, 2-3, 2-5 W
 temporarily allocated data
 block, 3-75 warm start, 1-11, 1-15,
 temporary 1-22, 1-25, 3-1
 file, 2-11 wildcard characters, 1-13
 file drive, 1-27, 3-71 write data record, 3-31
 submit file, 1-27
 terminate program execution,
 1-8, 1-22
 Wr ite

 File XFCB, 2-22, 3-83
 Protect Disk, 3-42, 3-43
 Random, 2-30, 3-50
 Random with Zero Fill,
 2 -30, 3- 59

 Sequential, 2-30, 3-31
 write-pending records, 3-68
 X

 XFCB, 2-19
 delete, 3-27
 Write File, 2-22

 Z
 Zero Fill
 Write Random, 3-59

Index-10

Index

Index

