
Using NROFF and TROFF

Part Number: 800-1755-10
Revision A, of 9 May 1988

UNIX is a registered trademark of AT&T.
SunOS is a trademark of Sun Microsystems, Inc.
Sun Workstation is a registered trademark of Sun Microsystems, Inc.

Material in this manual comes from a number of sources: NrofflTroff User's
Manual, Joseph F. Ossanna, Bell Laboratories, Murray Hill, New Jersey; A Troff
Tutorial, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey; Typ
ing Documents on the UNIXSystem: Using the -ms Macros with Troff and Nroff,
M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; A Guide to Preparing
Documents with -ms, M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey;
Document Formatting on UNIXUsing the -ms Macros, Joel Kies, University of
California, Berkeley, California; Writing Papers with Nroff Using -me, Eric P.
Allman, University of California, Berkeley; and Introducing the UNIXSystem,
Henry McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983. These
materials are gratefully acknowledged.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction .
1.1. nrof f andtrof f .

Text Formatting Versus Word Processing

TheEvolutionof nr of f andt ro f f

Continuation Lines 10

Transparent Throughput 10

Formatter and Device Resolution

Specifying Numerical Parameters

10

10

Numerical Expressions 12

1.5. Output and Error Messages 13

17Chapter 2 Line Format .

2.1. Controlling Line Breaks

. br â€”Break Lines

18

20

20Continuation Lines and Interrupted Text

Preprocessors and Postprocessors

1.2. tr o f f, Typesetters, and Special-Purpose Formatters

1.3. Usingthe nro f f and t r o f f Text Formatters

Options Common to nr of f and t r o f f

Options ApplicableOnly to nrof f ...

Options Applicable Only to tr of f ..

1.4. GeneralExplanation of t ro f f and nro f f Source Files

Backspacing .

Comments .

Contents â€”Continued

2.2. Justifying Text and Filling Lines

. ad â€”Specify Adjusting Styles

. na â€”No Adjusting

. nf and . f i â€”Tum Filling Off and On

2.3. Hyphenation .

. nh and . hy â€”Control Hyphenation .

. hw â€”Specify Hyphenation Word List .

. hc â€”Specify Hyphenation Character

2.4.. ce â€”CenterLines of Text

21

21

22

23

24

24

25

26

27

2.5.. ul and . cu â€”Underlineor EmphasizeText

2.6.. uf â€”UnderlineFont .

28

29

Chapter 3 Page Layout

3.1. Margins and Indentations .

. po â€”Set Page Offset

. ll â€”Set Line Length

. in â€”Set Indent

33

35

35

35

38

41

41

41

42

42

43

43

. zt â€”Return to Marked Vertical Position 44

Chapter 4 Line Spacing and Character Sizes

4.1.. sp â€”Space Vertically .

4.2.. ps â€”Change the Size of the Type .

4.3.. vs â€”Change Vertical Distance Between Lines

4.4.. 1s â€”Change Line Spacing .

4.5. Nx Function â€”Get Extra Line-Space

47

47

48

50

51

52

. t i â€”Temporarily Indent One Line .

3.2. Page Lengths, Page Breaks, and Conditional Page Breaks

. pl â€”Set Page Length

. bp â€”Start a New Page

. pn â€”Set Page Number .

. ne â€”Specify Space Needed

3.3. Multi-Column Page Layout by Marking and Returning

. mk â€”Mark Current Vertical Position

Contents â€”(;onti nued

4.6.. sv â€”Save Block of Vertical Space

4.7.. os â€”Output Saved Vertical Space .

4.8.. n s â€”Set No SpaceMode

4.9.. r s â€”Restore SpaceMode

4.10.. ss â€”Set Size of Space Character

4.11.. c s â€”Set Constant-Width Characters

52

53

53

53

54

Chapter 5 Fonts and Special Characters .
5.1.. f t â€”SetFont

57

58

5.2.. f p â€”Set Font Position 59

59

60

5.3.. f z â€”Force Font Size .

5.4.. bd â€”Artificial Boldface .

5.5. Character Set . 61

5.6. Fonts 62

5.7.. 1g â€”Control Ligatures . 62

Chapter 6 Tabs, Leaders, and Fields .
6.1.. ta â€”SetTabs

67

67

68

68

69

70

71

73

74

Chapter 7 Titles and Page Numbering

7.1. Titles in Page Headers

7.2. Fonts and Point Sizes in Titles

81

81

83

7.3.. pc â€”Page Number Character

7.4.. t1 Requestâ€”Three Parameters

84

85

Chapter 8 tro f f InputandOutput 89

Setting Relative Tab Stops

Right-Adjusted Tab Stops

Centered Tab Stops

. t c â€”Change Tab Replacement Character

Summary of Tabs

6.2. Leaders â€”Repeated Runs of Characters

. 1c â€”Change the Leader Character .

6.3.. f c â€”Set Field Characters

Contents â€”Continued

8.1.. so â€”Read Text from a File

8.2.. nx â€”Read Next Source File

89

91

8.3. Pipe Output to a Specified Program (nzo f f only)

8.4.. rd â€”Read from the Standard Input

8.5.. ex â€”Exit from nro f f or tro f f

91

92

94

8.6.. tm â€”Send Messages to the Standard Error File 94

Chapter 9 Strings.
9.1.. ds â€”Define Strings .

9.2.. as â€”Append to a String .

9.3. Removing or Renaming String Definitions

97

98

99

101

Chapter 10 Macros, Diversions, and Traps
10.1. Macros

105

105

. de â€”Define a Macro 105

. rm â€”Remove Requests, Macros, or Strings

. r n â€”Rename Requests, Macros or Strings

107

108

Macros With Arguments .

. am â€”Append to a Macro

Copy Mode Input Interpretation .

10.2. Using Diversions to Store Text for Later Processing

. di â€” Divert Text ..

108

112

112

112

113

114

114

115

116

116

116

117

Chapter 11 Number Registers

11.1.. n r â€”Set Number Registers

11.2. Auto-Increment Number Registers .

121

121

123

. da â€”Append to a Diversion .

10.3. Using Traps to Process Text at Specific Places on a Page

. wh â€”Set Page or Position Traps .

. ch â€”Change Position of a Page Trap

. dt â€”Set a Diversion Trap

. it â€”Set an Input-Line Count Trap

. em â€”Set the End of Processing Trap

Contents â€”Continued

11.3. Arithmetic Expressions with Number Registers

11.4.. a f â€”Specify Format of Number Registers

11.5.. rr â€”Remove NumberRegisters

124

125

127

131

131

12.2. Arbitrary Local Horizontal and Vertical Motions

Nv Function â€”Arbitrary Vertical Motion .

Nh Function â€”Arbitrary Horizontal Motion .

12.3. N0 Function â€”Digit-Size Spaces

12.4. 'N ' Function â€”Unpaddable Space.

12.5. N I and N" Functions â€”Thick and Thin Spaces

12.6. ~a Function â€”Non-Printing Zero-Width Character

12.7. No Function â€”Overstriking Characters

12.8. Nz Function â€”Zero Motion Characters .

132

132

133

134

136

136

137

139

12.9. ~wFunction â€”Get Width of a String

12.10. ~k Function â€”Mark Current Horizontal Place

140

141

12.11. Nb Function â€”Build Large Brackets 142

12.12. ~r Function â€”Reverse Vertical Motions . 143

12.13. Drawing Horizontal and Vertical Lines .

~j. Function â€”Draw Horizontal Lines

143

143

~L Function â€”Draw Vertical Lines 144

Combining the Horizontal and Vertical Line Drawing
Functions 145

12.14.. mc â€”Place Characters in the Margin . 145

Chapter 13 Character Translations

13.1. Input Character Translations .

13.2.. ec and . eo â€”Set Escape Character or Stop Escapes

13.3.. cc and . c2 â€”Set Control Characters .

149

149

149

150

13.4.. t r â€”OutputTranslation 150

Chapter 14 Automatic Line Numbering

14.1.. nmâ€”Number Output Lines .

153

153

Chapter 12 Drawing Lines and Characters .
12.1. Nu and Kd Functions â€”Half-Line Vertical Movements

Contents â€”Continued

14.2.. nn â€”Stop Numbering Lines 154

Chapter 15 Conditional Requests

15.1.. i f â€”ConditionalRequest .

15.2.. ie and . el â€”If-Else and Else Conditionals .

157

157

160

15.3.. i.g â€”Ignore Input Text 160

Chapter 16 Debugging Requests

16.1.. pm â€”Display Names and Sizes of Defined Macros

16.2.. f j. â€”Flush Output Buffer .

16.3.. ab â€”Abort .

165

165

166

166

Chapter 17 Environments .
17.1.. ev â€”Switch Environment

169

169

AppendixA troff RequestSummary 173

Appendix B Font and Character Examples 181

B.l. Font Style Examples 181

B.2. Non-ASCIICharacters and minus on the Standard Fonts 182

B.3. Non-AscH Characters and ', ', G, +, â€”,=, and + on the Special
Font . 182

Appendix C Escape Sequences. 1S7

Appendix D Predefined Number Registers . 191

Appendix E t r of f OutputCodes

E.l. Codes 00xxxxxxâ€”Flash Codes to Expose Characters

195

196

E.2. Codes 1xxerxxx â€”Escape Codes Specifying Horizontal
Motion . 197

197

197

198

E.6. How Fonts are Selected 199

E.3. Codes 0 j. lxxxxx â€”Lead Codes Specifying Vertical Motion

E.4. Codes 0101xxxx â€”Size Change Codes .

E.5. Codes 010 0xxxx â€”Control Codes

Contents â€”Continued

E.7. Initial State of the C/Aff

Index

199

201

Tables

12

19

62

Table 6-1 Types of Tab Stops . 70

83

124

Table 11-2 Arithmetic Operators and Logical Operators for
Expressions 124

Table 11-3 Interpolation Formats for Number Registers .„,„..;„„„,.....,.....,„„,„....„126

142

159

Table 1-1 Scale Indicators for Numerical Input

Table 1-2 Default Scale Indicators for Certain t r o f f Requests and
Functions

Table 1-3 Arithmetic Operators and Logical Operators for Expressions

Table 2-1 Constructs that Break the Filling Process .

Table 2-2 Formatter Requests that Cause a Line Break

Table 2-3 Adjusting Styles for Filled Text

Table 5-1 Exceptions to the Standard AsaI Character Mapping

Table 7-1 Requests that Cause a Line Break

Table 11-1 Access Sequences for Auto-incrementing Number
Registers

Table 12-1 tro f f Width Functionâ€”ct Number.Register Values

Table 12-2 Pieces for Constructing Large Brackets„„,...„...........,„...

Table 15-1 Built-In Condition Names for Conditional Processing

20

21

Tables â€”Continued

TableA-1 Summaryof nro f f and tro f f Requests
Table A-2 Notes in the Tables

173

178

Table B-1 Summaryof t ro f f Special Characters . 182

Table C-1 tro f f Escape Sequences . 187

Table D-1 General Number Registers .

Table D-2 Read-Only Number Registers

191

191

Table E-1 Size Change Codes 197

Table E-2 Single Point-Sizes versus Double Point-Sizes ..198

Table E-3 C/A/I' Control Codes and their Meanings . 198

Table E-4 Correspondence Between Rail, Mag, Tilt, and Font Number 199

22

34

Figure 2-1 Filling and Adjusting Styles .

Figure 3-1 Layout of a Page .

Figures

Preface

This manual provides reference information and examples for the text formatters
nrof f and trof f. We assumeyou are familiar with a terminalkeyboardand
the Sun system. If you are not, see Getting Started with SunOS: Beginner' s
Guide for information on the basics, like logging' in and the Sun file system. If
you are not familiar with text editors, read Doing More with SunOS: Beginner' s
Guide and the chapter "Introduction to Text Editing" in Editing TextFiles.
Finally, we assume that you are using a Sun Workstation, although specific ter
minal information is also provided.

For additional details on Sun system commands and programs, see the SunOS
Reference Manual.

Here is a summary of the chapters that follow:Summary of Contents

l. Introduction â€”Describes what tro f f can do for you, some tools you can
use with tro f f or nro f f to refineyour results,how to use nro f f and
t ro f f, the differences between the two text formatting programs, and a lit
tle about the mechanismsbuilt-in to nr of f and tr of f.

2. Line Format â€”Explains how the text formatting programs fill and adjust
text input lines and how various formatting requests affect filling and adjust
ing functionsin tro f f.

3. Page Layout â€”Describes the default page layout parameters built-in to
t r o f f and how you can alter them. Also explains how certain formatting
requests interact in laying out pages.

4. Line Spacing and Character Sizesâ€”Explains the available type and spac
ing sizes in t r of f and nr of f, and how to change them.

5. Fonts and Special Characters â€”Describes the fonts available with nro f f
and tr of f and how to change them.

6. Tabs, Leaders, and Fields â€”Explains what tabs, leaders, and fields are, and
how to set them.

â€” XVâ€”

7. Titles and Page Numbering â€”Explains how to create page headers and
page footers. Also covers how to use the built-in t r of f page number regis
ter to print page numbers on your document automatically.

Preface â€”Continued

tro f f Input and Output â€”Describes how to embed files within files, to
switch input from one file to another, to display a message on your terminal
when tro f f reaches a certainpoint in a file, and in nr of f only, how to
pipe the output from a file to a program by using a special nro f f command
in the file.

Macros, Diversions, and Traps â€”Describes how to define macros, store
information in diversions, and use diversions and traps to process text at
specific places on pages.

10.

Number Registersâ€”Explains what tro f f number registers are and what
you can use their values for.

Drawing Lines and Characters â€”Describes the severalbuilt-in tro f f
functions for moving to arbitrary places on the page and for drawing things.

12.

Character Translations â€”Describes how to change the escape character
and translate the value of one character into another.

13.

Automatic Line Numbering â€”Explains how to use the tro f f requests for
numbering lines in the output file.

14.

Conditional Requestsâ€”Describes tro f f mechanisms for conditionally
accepting input.

15.

16. Debugging Requests â€”Explains requests for displaying names and sizes of
defined macros, flushing the output buffer, and aborting the formatting.

Environments â€”Describes how to shift input processing between the three
nrof f /tro f f environments.

17.

t r of f RequestSummaryâ€”A quick referencesummarizing nro f f and
trof f requests.

A.

Font and Character Examples â€”Several tables of special characters like
Greek letters, foreign punctuation, and math symbols.

Escape Sequences â€”Summarizes escape sequences for obtaining values of
number registers, for describing arbitrary motions and drawing things, and
for specifying certain miscellaneous functions.

Predefined Number Registers â€”Tables of tro f f General and Predefined
Number Registers

D.

t ra f f Output Codes â€”A summary of the binary codes for the C/Afl' pho
totypesetter.

E.

Conventions Used in This
Manual

Throughout this manual we use

hostname%

â€”XVIâ€”

Strings â€”Explains how to give a string of characters a new name so you
can reference them easily. Also provides a facility for referencing the values
of the strings.

Preface â€”Continued

as the promptto whichyou type systemcommands. Bo1df'ace type
writer f ont indicatescommandsthat you type in exactlyas printedon the
pageof thismanual.Regular typewriter f ont representswhatthe sys
tem prints out to your screen. Typewriter font also specifies Sun system com
mand names (program names) and illustrates source code listings. Italics indi
cates general arguments or parameters that you should replace with a specific
word or string. We also occasionally use italics to emphasize important terms.

Notation Used in This Manual

Single-character arguments are indicated by single lower case letters and one- or
two-character arguments are indicated by a pair of lower case letters. Character
string arguments are indicated by multi-character mnemonics.

Numerical parameters are indicated in this manual in two ways. ~ means that
the argument may take the forms N, +N, or â€”N and that the corresponding effect
is to set the affected parameter to N, to increment it by N, or to decrement it by N
respectively. Plain N means that an initial algebraic sign is not an increment
indicator, but merely the sign of N. Generally, unreasonable numerical input is
either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are . sp, . wh, . ch,
. nr, and . if. The requests .ps, . f t, .po, .vs, . 1s, . 11, . in, and . 1t
restore the previous parameter value in the absence of an argument.

Introduction

Introduction

1.1. nrof f andtrof f

Text Formatting Versus Word Processing

The Evolution of nr of f and t ro f f

Preprocessors and Postprocessors ...

1.2. t r o f f, Typesetters, and Special-Purpose Formatters

1.3. Using the nroff and troff TextFormatters

Options Common to nroff and troff

Options Applicable Only to nrof f ..

Options Applicable Only to tr o f f ...

1.4. General Explanation of t ra f f and nr of f SourceFiles

Backspacing,..

Comments

Continuation Lines

Transparent Throughput

Formatter and Device Resolution

Specifying Numerical Parameters

Numerical Expressions

1.5. Output and Error Messages

Introduction

nr of f and t ro f f are text processingutilities for the Sun system. nr of f for
mats text for typewriter-like terminals (such as Diablo printers). tr of f is
specificallyoriented to formatting text for a phototypesetter. nr of f and tr of f
accept lines of text (to be printed on the final output device) interspersed with
lines of format control information (to specify how the text is to be laid out on
the page) and format the text into a printable, paginated document having a user
designedstyle. nro f f and t ro f f offer unusual freedom in documentstyling,
including:

o detailed control over page layout;

o arbitrary style headers and footers;

o arbitrary style footnotes;

o automatic sequence numbering for paragraphs, sections, etc;

a multiple-column output;

o dynamic font and point-size control;

o arbitrary horizontal and vertical local motions at any point;

o a family of automatic overstriking, bracket construction, and line drawing
functions.

nr of f and t r of f are highly compatiblewith each other and it is almost
always possible to prepare input acceptable to both. The formatters provide
requests (conditional input) so that you can embed input expressly destined for
either nro f f or t ro f f. nr of f can prepareoutputdirectlyfor a varietyof ter
minal types and is capable of utilizing the full resolution of each terminal.

You shouldbe awarethat using nr of f or tr of f 'in the raw' requiresa
detailed knowledge of the way that these programs work and a certain knowledge

The material in this chapter evolved from A rroff Tutorial, by Brian Kernighan of BeHLaboratories, and
from aroglrrog User's Manual, originally written by Joseph Ossanna of BeHLaboratories.

®~>~sun
micros ystems

Revision A, of 9 May 1988

This manual provides a user's guide and reference section for nro f f and
tr of f. Note that throughoutthe text we referto nro f f and tr of f moreor
less interchangeably â€”places where the narrative refers specifically to one or the
other processor are noted.

4 Usingnrof f andtrof f

of typographicalterms. nr of f and tro f f don't do a great deal of work for you
â€”for example, you have to explicitly tell them how to indent paragraphs and
number pages and things like that.

If what you are trying to do is just get a job done (like writing a memo), you
shouldn't be reading this manual at all, but rather the chapter "Formatting Docu
ments with the -ms Macros" in the Formatting Documents manual. If, on the
other hand, you would like to leam the fine details of a programming language
designed to control a typesetter, this is the place to start reading.

In many ways, nr of f 's and t r of f 's control language resembles an assembly
language for a computer â€”a remarkably powerful and flexible one â€”many
operations must be specified at a level of detail and in a form that is too hard for
most people to use effectively.

The single most important rule when using tro f f is not to use it directly, but
through some intermediary such as one of the macro packages, or one of the vari
ous preprocessors described in Formatting Documents. In the few cases where
existing macro packages don't do the whole job, the solution is not to write an
entirely new set of tr o f f instructions from scratch, but to make small changes
to adapt existing packages. In accordance with this strategy of letting someone
else do the work, the part of t ro f f described here is only a small part of the
whole, although it tries to concentrate on the more useful parts. In any case,
there is no attempt to be complete. Rather, the emphasis is on showing how to
do simple things, and how to make incremental changes to what already exists.
If you are interested in the complete story, look into the t ro f f source itself.

Many newcomers to the UNIX system are surprised to find that there are no word
processors available. This is largely historical â€”the types of documents (such
as the Sun manuals) that people do with the UNIX system's text formatting pack
ages just can't be done with existing word processors. Before you get into the
details of nro f f and t ro f f, here is a short discussionon the differences
between text formatters and word processors, and their relative strengths and
weaknesses.

Text Formatting Versus Word
Processing

®g>~sunmicrosystems
Revision A, of 9 May 1988

A word processor is a program that to some extent simulates a typewriter â€”text
is edited and formatted by one program. You type text at a computer terminal,
and the word processor formats the text on the screen for you as you go. You
usually get special effects like underlining and boldface by typing control indica
tors. The word processor usually displays these activated features using inverse
video or special marks on the screen. The document is displayed on the terminal
screen in the same format as it will appear on the printing device. The effects of
this are often termed 'What You See Is What You Get' (usually called
WYSIWYGand pronounced 'wizzi-wig'). Unfortunately, as has been pointed
out, the problem with many WYSIWYGeditors is that 'What You See Is All You
Get'. Ingeneral, wordprocessorscannothandlelargedocuments. Inprinciple,it
is possible to write large manuals and even whole books with word processors,
but the process gets painful for large manuscripts. Sometimes a change, such as
deleting a sentence or inserting a new one, in the early part of a document can
require that the whole document has to be reformatted. A change in the overall
structure of the formatting requirements (for example, a changed indentation

Chapter 1 â€”Introduction 5

depth) will also mean that the whole document has to be reformatted. Word pro
cessors usually don't cope with automatic chapter and section numbering (of the
kind you see in the Sun manuals), neither can they generate tables of contents
and indices automatically. These tasks have to be done manually, and are a
potential source of error. Word processors are eminently suitable for memos and
letters, and can handle short documents. But large documents, or formatting
documents for sophisticated devices like modem phototypesetters, requires a text
formatter.

Notwithstanding all of the above, the UNIX system has had text formatting utili
ties since the very beginning, and many documents were written using the capa
bilitiesofnrof f ortrof f.

One of the very first text formatting programs was called runoff and was a utility
for the Compatible Time Sharing System (CTSS) at MIT in the early 1960's.
Runog was named for the way that people would say 'I' ll just run off a docu
ment'.

The Evolutionof nrof f and
troff

When the UNIX system came to have a text formatter, the text formatter was
called roff, because UNIX people like to call things by short and cryptic names.
Roff was a simple program that was easy to work with as long as you were writ
ing very small and simple documents for a line-printer. In some ways, roff is
easier to use than nro f f or tro f f because roffhad built-in facilitiessuchas
being able to specify running headers and footers for a document with simple
commands.

nrof f standsfor'Newerrof . troff is anadaptationof nroff to drivea
phototypesetting machine. Although t ro f f is supposed to mean 'typesetter
roff', some people have formed the theory that tro f f actually stands for 'Times
Romanoff' because of t ro f f 's penchant for the Times Roman typeface.

nrof f and trof f are muchmore flexible(and much more complicated)pro
grams â€”it's safe to say that they don't do a lot for you â€”for instance, you have
to manage your own pagination, headers, and footers. The way that nro f f and
tro f f ease the burden is via facilities to define your own text formatting com
mands (macros), define strings, and store and manipulate numbers. Without
these facilities, you would go mad (many people have â€”the author of this

+>~sun Revision A, of 9 May 1988

A textformatter such as nro f f or t ro f f does not in generalperform any edit
ing â€”its only job is reading text from a file and formatting that text for printing
on some device. Entering the text into the file, and formatting the text from that
file for printing are two separate and independent operations. You prepare your
file of text using a text editor such as vi (described elsewhere in this manual).
The file contains text to be formatted, interspersed with formatting instructions
which control the layout of the final text. The text formatter reads this file of
text, and obeys the formatting instructions contained in the file. The results of
the formatting process is a finished document. The disadvantage of a text for
matter is that you have to run them to find out what the final result will look like.
Many people find the idea of embedded 'formatting commands' foreign, as they
do the idea of two separate processes (an edit followed by a run of the formatter)
to get the final document.

6 Usingnrof f andtrof f

document among them). In addition, there are supporting packages for doing
special effects such as mathematics and tabular layouts.

Becauset ro f f or nro f f are so hard to use 'in the raw', varioustools have
evolved to convert from human-oriented ways of specifying things into codes
that trof f or nrof f canunderstand.Toolsthatdo translationsfor trof f or
nro f f before the fact are calledpreprocessors. There are also tools that hack
over the output of nro f f for different devices or for other requirements. Tools
that do conversionsof tr of f or nr of f output after the fact are calledpostpro
cessors. Refer to the manual Formatting Documents for explanations of nr of f
and trof f pre- andpostprocessors.

Preprocessors and
Postprocessors

1.2. troff, Typesetters,
and Special-Purpose
Formatters

tro f f was written very much with the C/A/T in mind. The internal units of
measurementthat trof f uses are C/A/I' units, tro f f onlyunderstandsfour
fonts at a time, and so on. Throughout this chapter, much of the terminology is
based on tr of f 's intimate relationship with the C/AfI'.

1.3. Usingthe nro f f and
tro f f Text
Formatters

To use nr of f or tr of f you firstprepareyour fileof text with nr of f or
t r of f requests embedded in the file to control the formatting actions. The
remainder of this document discusses the formatting commands. Then you run
the formatter at the command level like this:

hostname% nroff optionsfiles

or, of course:

hostname% troff optionsfiles

where options represents any of a number of option arguments andfiles
represents the list of files containing the document to be formatted.

An argument consisting of a single minus (â€”) is taken to be a file name
corresponding to the standard input. If no file names are given, input is taken
from the standard input.

Options may appear in any order so long as they appear before the files. There
are three parts to the list of options below: the first list of options are common to
both nro f f and t ro f f; the secondlist of options are only applicableto
nr of f; the third list of optionsare only applicableto tr of f.

>~>~sun
micros ystsms

Revision A, of 9 May 1988

Please be sure to read this: this sectioncoverssomeaspectsof tr of f that
are generally glossed over in the traditional UNIX system manuals. tr o f f was
originally designed as a text formatter targeted to one specific machine â€”that
machine was called a Graphics Systems Incorporated (GSI) C/A/I' (Computer
Assisted Typesetter). The C/A/T is a strange and wonderful device with strips of
film mounted on a revolving drum, lenses, and light pipes. The C/A/T flashes
character images on film which you then develop to produce page proofs for your
book or manual or whatever. The C/A/T is almost extinct now except for some
odd niches like Berkeley.

Chapter 1 â€”Introduction 7

Each option is typed as a separate argument â€”for example,

hostname% nroff -o4,8â€”10 -T300S -ms file1 file2

Options Commonto nro f f
andtroff

-olist
Print only pages whose page numbers appear in list, which consists of
comma-separated numbers and number ranges. A number range has the
form Nâ€”M and means pages N through M; an initial â€”N means from the
beginning to page N; and a final Nâ€”means from N to the end.

-nN
Number first generated page N.

-sN
Stop every N pages. nr o f f will halt prior to every N pages (default N=1)
to allow paper loading or changing, and will resume upon receipt of a new
line.

-mname
Addsthemacrofile/usr/lib/tmac/tmac. namebeforetheinputfile.

-raN
Register a (one-character) is set to N.

-i. Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the . r d request.

-x Suppress formatted output. The only output you get are messages from . tm
(terminal message) requests, and from diagnostics.

Options Applicable Only to
nroff -h Output tabs used during horizontal spacing to speed output as well as reduce

byte count. Device tab settings assumed to be every 8 nominal character
widths. Default settings of input (logical) tabs is also initialized to every 8
nominal character widths.

-Tname
Specifies the name of the output terminal type. Currently-defined names are
37 for the (default) Model 37 Teletype®, tn300 for the GE TermiNet 300
(or any terminal without half-line capabilities), 3 0 0S for the DASI-300S,
300 for the DASI-300,and 450 for the DASI-450(Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolu
tion.

>~>~sun
ITIIClOS+temS

Revision A, of 9 May 1988

formats pages 4, 8, 9, and 10 of a document contained in the files named file1 and
file2, specifies the output terminal as a DASI-300S,and invokes the â€”msun macro
package.

8 Usingnroff andtroff

Options Applicable Only totroff

®~~+sun Revision A, of 9 May 1988

1.4. General Explanation
oftroff andnroff
Source Files

-t Direct output to the standard output instead of the phototypesetter.

-a Send a printable (ASCII)approximation of the results to the standard output.

-pN
Print all characters in point size N while retaining all prescribed spacings
and motions, to reduce phototypesetter elapsed time.

This sectionof the nro f f and t ro f f manual coversgeneric topics relatedto
the format of the input file, how requests are formed, and how numeric parame
ters to requests are stated.

To use tr o f f, you have to prepare not only the actual text you want printed, but
some information that tells how you want it printed. For t ro f f, the text and the
formatting information are often intertwined. Most commands to tr of f are
placed on a line separate from the text itself, beginning with a period (one com
mand per line). For example:

changes the 'point size', that is, the size of the letters being printed, to '14 point'
(one point is I/72 inch) like this:

Here is some text in the regular size characters, but we want to make some of the
textina larger size to emphasize something

Occasionally, though, something special occurs in the middle of a line â€”to
produce Area = rtr you have to type

Area = h(*phfIrhfRh I hs8hu2hdhsO

(which we will explain shortly). The backslash character (N)introduces tro f f
commands and special characters within a line of text.

To state the above more formally, an input file to be processed by t ro f f or
nr of f consists of text lines, which are destined to be printed, interspersed with
control lines, which set parameters or otherwise control subsequent processing.
A control line is usually called a request.

A request begins with a control character â€”normally . (period) or ' (apos
trophe or acute accent) â€”followed by a one or two character name. A request is
either:

a basic request
(also called a command) which is one of the many predefined things that
nro f f or t r of f can do. For example, . 11 6 . 5i is a basic requestto set
the line-length to 6.5 inches, and . in 5 is a basic request to indent the left
margin by five en-spaces.

Chapter 1 â€”Introduction 9

a macro reference
specifies substitution of a user-defined macro in place of the request. A
macro is a predefined collection of basic requests and (possibly) other mac
ros. For example, in the â€”ms macro package discussed elsewhere in this
manual, . LP is a macro to start a new left-blocked paragraph.

The ' (apostrophe or acute accent) control character suppresses the break
functionâ€”the forced output of a partially filled lineâ€”caused by certain
requests.

The control character may be separated from the request or macro name by white
space (spaces and/or tabs) for aesthetic reasons. Names must be followed by
either spaceor newline. nro f f or t ro f f ignores control lines whosenames
are unrecognized.

Various special functions may be introduced anywhere in the input by means of
an escape character, normally N. For example, the function knR interpolates the
contents of the number register whose name is R in place of the function. Here R
is either a single character name in which case the escape sequence has the form
Nnx,or else R is a two-character name, in which case the escape sequence must
have the form Nn (xx. In general, there are many escape sequences whose one
character form is Nf x and whose two-character form is Nf (xx, where f is the
function and x or xx is the name.

To print the escape character (usually backslash), use ~e (backslash e).

Unless in copy mode, the ASCIIbackspace character is replaced by a backward
horizontal motion having the width of the space character. Underlining as a form
of line-drawing is discussed in the section on Arbitrary Motions and Drawing
Lines and Characters. A generalized overstriking function is also described in
the above- mentioned section.

Backspacing

Comments may be placed at the end of any line by prefacing them with N". A
comment line cannot be continued by placing a Nat the end of the line â€”see the
discussion on continuation lines below.

Comments

A line beginning with N" appears as a blank line and behaves like a . sp 1
request:

when we format the above lines we get this:

If you want a comment on a line by itself but you don't want it to appear as a
blank line, type it as . N":

®~>~sunmicrosystems
Revision A, of 9 May 1988

10 Usingnrof f andtrof f

when we format the above lines we get this:

Here is a line of text
and here is another line of text

Continuation Lines

An input line beginning with a ~! is read in copy mode and transparently output
(without the initial ~!); the text processor is otherwise unaware of the line' s
presence. This mechanism may be used to pass control information to a post
processor or to embed control lines in a macro created by a diversion. Refer to
Chapter 10 for information describing diversions.

Transparent Throughput

Formatter and Device
Resolution

t r of f internally uses 432 units/inch, corresponding to the phototypesetter
which has a horizontal resolution of 1/432 inch and a vertical resolution of 1/144
inch. nr o f f internally uses 240 unitsfinch, corresponding to the least common
multiple of the horizontal and vertical resolutions of various typewriter-like out
put devices. tro f f rounds horizontal/verticalnumerical parameter input to the
actual horizontal/vertical resolution of the Graphic Systems typesetter. nr of f
similarly rounds numerical input to the actual resolution of the output device
indicated by the â€”T option (default Model 37 Teletype).

Specifying Numerical
Parameters

Many requests can have numerical arguments. Both nr of f and t r of f accept
numerical input in a variety of units. The general form of such input is

.xx nnnnunits

where .xx is the request, nnnn is the number, and units is the "scale indicator."

Scale indicators are shown in the following table, where S is the current type size
in points, Vis the current vertical line spacing in basic units, and C is a nominal
character width in basic units.

®~>~sun
micros ystems

Revision A, of 9 May 1988

An uncomfortably long input line that must stay one line (for example, a string
definition, or unfilled text) can be split into many physical lines by ending all but
the last one with the escape t. The sequence N(newline) is always ignoredâ€”
except in a comment â€”see below. This provides a continuation line facility.
The Xat the end of the line is called a concealed newline in the jargon.

Chapter 1 â€”Introduction 11

Table 1-1 Scale Indicators for Numerical Input

In nro f f, both the em and the en are taken to be equal to the C, which is
output-device dependent; common values are 1/10 and 1/12 inch. Actual charac
ter widths in nro f f need not be all the same and constructed characters such as
â€”> (â€”>) are often extra-wide.

The default scaling is ems for the horizontally-oriented requests and functions,
Vs for the vertically-oriented requests and functions, p for the vertical spacing
request; and u for the number register and conditional requests. See Table 1-2 for
a summary of the default scale indicators for the t r o f f requests and functions
that take scale indicators.

All other requests ignore any scale indicators. When a number register contain
ing an already appropriately-scaled number is interpolated to provide numerical
input, the unit scale indicator u may need to be appended to prevent an additional
inappropriate default scaling. The number, N, may be specified in decimal form,
but the parameter finally stored is rounded to an integer number of basic units.

®~~+sun Revision A, of 9 May 1988

Table 1-2 Default Scale Indicatorsfor Certain tro f f Requestsand Functions

12 Usingnrof f andtrof f

The absolute position indicator l (the pipe character} may precede a number N to
generate the absolute distance to the vertical or horizontal place N. For
vertically-oriented requests and functions, I N becomes the absolute distance in
basic units from the current vertical place on the page or in a diversion (see
Chapter 10 for the section on diversions) to the vertical place N. For all other
requests and functions, I N becomes the distance from the current horizontal
place on the input line to the horizontal place N. For example,

. sp I 3.2c

will space in the required direction to 3.2 centimeters from the top of the page.

Numerical Expressions Wherever numerical input is expected, you can type an arithmetic expression.
An expression involves parentheses and the arithmetic operators and logical
operators shown in the table below:

Table 1-3 Arithmetic Operators and Logical Operators for Expressions

Except where controlled by parentheses, evaluation of expressions is left-to-right
â€”there is no operator precedence.

In certain requests, an initial + or â€”is stripped and interpreted as an increment or
decrement indicator respectively. In the presence of default scaling, the desired
scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains
2 and the current point size is 10, then

. 11 (4. 251+~nxP+3) /2u

will set the line length to I/2 the sum of 4.25 inches + 2 picas + 30 points.

®g><sun
micros ystems

Revision A, of 9 May 1988

Chapter 1 â€”Introduction 13

1.5. Output and Error
Messages

The output from . tm, . pm, and the prompt from . r d, as well as various error
messages are written onto the standard error message output. The latter is dif
ferent from the standard output, where nr of f formatted output goes. By
default, both are written onto the user's terminal, but they can be independently
redirected â€”in the case of tr of f, the standard output should always be
redirected unless the â€”a option is in effect, because tr of f 's output is a strange
binary format destined to drive a typesetter.

®g~>sunmicrosystsms
Revision A, of 9 May 1988

Variouserror conditionsmay occur during the operationof nr of f and t ro f f.
Certain less serious errors having only local impact do not stop processing. Two
examples are word overgo', caused by a word that is too large to fit into the
word buffer (in fill mode), and line over~vv, caused by an output line that grew
too large to fit in the line buffer; in both cases, a message is printed, the offend
ing excess is discarded, and the affected word or line is marked at the point of
truncationwith a + in nro f f and a m in tr of f. The philosophy is to continue
processing, if possible, on the grounds that output useful for debugging may be
produced. If a serious error occurs, processing terminates, and an appropriate
message is printed. Examples are the inability to create, read, or write files, and
the exceeding of certain internal limits that make future output unlikely to be
useful.

Line Format

Line Format 17

2.1. Controlling Line Breaks 18

. br â€”Break Lines 20

Continuation Lines and Interrupted Text

2.2. Justifying Text and Fiihng Lines

. ad â€”Specify Adjusting Styles

. na â€” No Adjusting ..

. n f and . f i â€”Tum Filling Off and On ...

2.3. Hyphenation ..

. nh and . hy â€”Control Hyphenation

. hw â€”Specify Hyphenation Word List

. hc â€”Specify Hyphenation Character

2.4.. ce â€”Center Lines of Text

20

21

21

22

23

24

24

25

26

27

2.5.. ul and . cu â€”Underline or Emphasize Text 28

292.6.. u f â€”Underline Font

'5 ' Nchhh'' h''ki hh%NhhhkkhYA4kN A% Yi%NS''&%NON A&iNkh4M(iCNv h/6'MhkbCcAA' WAhhhhhvNPANRN4''"" ' h NN ' AN' Wc%

Line Format

Perhaps the most important reason for using t r of f or nr of f is to use its filling
and adjusting capabilities. Here is what filling and adjusting mean:

meansthat tro f f or nro f f collectswordsfrom your inputtext
lines and assembles the collected words into an output text line until
some word doesn't fit. An attempt is then made to hyphenate the
word in an effort to assemble a part of it into the output line. Filling
continues until something happens to break the filling process, such
as a blank line in the text, or one of the t ro f f or nro f f requests
that break the line â€”things that break the filling process are dis
cussed later on.

Filling

In the absenceof any other information,tro f f 's or nro f f 's standardbehavior
is to fill lines and adjust for straight left and right margins, so it is quite possible
to create a neatly formatted document which only contains lines of text and no
formatting requests. Given this as a starting point, the simplest document of all
contains nothing but blocks of text separatedby blank lines â€”t ro f f or nro f f
will fill and justify those blocks of text into paragraphs for you. To get further
control over the layout of text, you have to use requests and functions embedded
in the text, and that is the subject of this entire paper on using t r o f f .

A word is any string of characters delimited by the space character or the begin
ning or end of the input line. Any adjacent pair of words that must be kept
together (neither split across output lines nor spread apart in the adjustment pro
cess) can be tied together by separating them with the unpaddable space charac
ter 'N ' (backslash-space) â€”also called a 'hard blank' in other systems. The
adjusted word spacings are uniform in t ro f f and the minimum interword spac
ing can be contmlled with the . s s (space size) request. In nro f f, interword
spaces are normally nonuniform because of quantization to character-size spaces,
but the â€”e command line option requests uniform spacing to the full resolution
of the output device. Multiple inter-word space characters found in the input are
retained, except for trailing spaces.

®~csun Revision A, of 9 May 198817

Adjusting means that once the line has been filled as full as possible, spaces
between words on the output line are then increased to spread out the
line to the current line-length minus any current indent. The para
graphs you have just been reading are both filled and adjusted.
Justification implies filling â€”it makes no sense to adjust lines
without also filling them.

18 Usingnrof f andtrof f

Filling and adjusting and hyphenation can all be prevented or controlled by
requests that are discussed later in this part of the manual.

An input text line ending with ., ?, or ! is taken to be the end of a sentence, and
an additional space character is automatically provided during filling.

A text input line that happens to begin with a control character can be made to
not look like a control line by prefacing it with the non-printing, zem-width filler
character Na. Still another way is to specify output translation of some con
venient character into the control character using the . t r (translate) requestâ€”
see the relevant section.

The text length on the last line output is available in the . n number register, and
text baseline position on the page for this line is in the n 1 number register. The
text baseline high-water mark on the current page is in the . h number register.

2.1. Controlling Line
Breaks

®g>~sun
micros ystems

Revision A of 9 May 1988

When filling is turned on, words of text are taken from input lines and placed on
output lines to make the output lines as long as they can be without overflowing
the line length, until something happens to break the filling process. When a
break occurs, the current output line is printed just as it is, and a new output line
is started for the following input text. There are various things that cause a break
to occur:

Chapter 2 â€”Line Format 19

Table 2-1 Constructs that Break the Filling Process

If your input text contains any completely blank lines, trof f or nrof f
assumes you mean them. So it prints the current output line, then your blank
lines, then starts the following text on a new line.

Blank line(s)

at the beginning of a line are significant. If there are spaces at the start of a
line, trof f or nro f f assumesyou know what you are doing and that you
really want spaces there. Obviously, to achieve this, the current output line
must be printed and a new line begun. Avoid using tabs for this purpose,
since they do not cause a break.

Spaces

A . br request (break) request can be used to make sure that the following
text is started on a new line.

A .br request

Some troff or nroff requests cause a break in the filling process.
However, there is an alternate format of these requests which does not cause a
break. That is the format where the initial period character (.) in the request
is replaced by the apostrophe or single quote character ('). The list of
requests that cause a break appears in the table below this one.

tro f f or nro f f requests

When filling is in effect, the in-line 4p function may be embedded or attached
to a word to cause a break at the end of the word and have the resulting output
line spread out to fill the current line length.

A Np Function

Filling stops when the end of the input file is reached.End offile

Breaks caused by blank lines or spaces at the beginning of a line enable you to
take advantageof the fillingandjustification features provided by tro f f or
nr of f withouthavingto use any t ro f f or nro f f requestsin yourtext.

As mentionedin the table abovein the item entitled"tro f f or nr of f
requests," there are some requests that cause a break when they are encountered.
The list of requests that break lines is short and natural:

~g>~sunmicrosystems
Revision A, of 9 May 1988

I I I I

i / I ~ I i

20 Usingnrof f andtrof f

Table 2-2 Formatter Requests that Cause a Line Break

No other requests break lines, regardless of whether you use a . or a' as the con
trol character. If you really do need a break, add a . br (break) request at the
appropriate place, as described below.

. br â€”Break Lines The .br (break) request breaks the current output line and stops filling that line.
Any new output will start on a new line.

Mnemonic:

Form of Request:
Initial Value:

.br
Not Applicable
cause breakIf No Argument:

Explanation: Stop filling the line currently being collected and output the line without
adjustment. Text lines beginning with space characters and empty text lines
(blank lines) also cause a break.

Continuation Lines and
Interrupted Text

The copying of an input line in nofill (non-fill) mode (see below) can be inter
rupted by terminating the partial line with a Nc. The next encountered input text
line will be considered to be a continuation of the same line of input text. Simi
larly, a word withinfilled text may be interrupted by terminating the word (and
line) with Nc; the next encountered text will be taken as a continuation of the
interrupted word. If the intervening control lines cause a break, any partial line
will be forced out along with any partial word.

®~®~sun Revision A, of 9 May 1988

Chapter 2 â€”Line Format 21

Table 2-3 Adjusting Stylesfor Filled Text

Summary of the . ad Request

adjustMnemonic:

Form of Request:

Initial Value:

.Bdc

If No Argument:

Explanation:

E (see Table A-2)Notes:

®~®~sun Revision A, of 9 May 1988

2.2. Justifying Text and
Filling Lines

. ad â€”Specify Adjusting
Styles

To change the style of text justification, use the . ad (adjust) request to specify
one of the four different methods for adjusting text:

It makes no sense to try to adjust lines when they are not being filled, so if filling
is off when a . ad request is seen, the adjusting is deferred until filling is tumed
on again.

. ad b â€”that is, adjust both margins.

Adjust in the last specified adjusting mode.

Adjust lines â€”if fill mode is off, adjustment is be deferred until fill mode is
back on. If the type indicator c is present, the adjustment type is changed as
shown in Table 2-3.

The current adjustment indicator c can be obtained from the . j number register.

The following figure illustrates the different appearances of filled and justified
text.

22 Usingnrof f andtrof f

This paragraph is an example of 'flush left, ragged right', which is what you get when you have filling
without adjusting â€”words are placed on the line to fill lines out as far as possible, but no interword
spaces are inserted so the right-hand margin looks ragged. This paragraph was formatted using an . ad
j. (adjust left) request, which has the same effect as using a . na (no adjust) request described later.

Then this paragraph is an illustration of text formatted as ' flush right, ragged left' â€”words are placed on
the line to fill lines out as far as possible, then the lines are made to line up on the right-hand margin, no
interword spaces are inserted, and so the left-hand margin looks ragged. This paragraph was formatted

using an . ad r (adjust right) request.

Finally, this paragraph is an instance of a formatting style called 'centered' adjusting, also known as
'ragged left, ragged right' â€”words are placed on the line to fill lines out as far as possible, then the lines

are centered so that both margins look ragged. This paragraph was formatted using an . ad c (adjust
center) request.

Figure 2-1 Filling and Adjusting Styles

. na â€”No Adjusting If you don't specifyotherwise,tro f f or nro f f justifies yourtext so that both
left and right margins are straight. This can be changed if necessary â€”one way,
as we showed above, is to use the . ad j. request to get left adjusting only so
that the left margin is straight and the right margin is ragged. Another way to
achieve this same effect is to use the . na (no adjust) request. Output lines are
still filled, providing that filling hasn't also been tumed off â€”see the . n f (no
fill) and . f i (fill) requestsbelow. If fillingis still on, tr of f or nro f f pro
duces flush left, ragged right output. To turn adjusting back on (return to the pre
vious state), use the . ad request.

®~>~sun Revision A, of 9 May 1988

This paragraph is filled and adjusted on both margins. This is the easiest formatting style to achieve
using nrof f or tro f f because you don't have to place any requests in your text â€”you just type the
blocks of text into the input file and the formatter does something reasonably sane with them. Although
we specified nothing to get the paragraph filled and adjusted, we could have used an . ad b (adjust
both) request, or a . ad n (adjust normal) request â€”they both mean the same thing, namely, fill lines
and adjust both margins.

Chapter 2 â€”Line Format 23

Summary of the . na Request

no adjustMnemonic:

Form of Request:

Initial Value:

.na

Adjusting is on by default

adjusting is tumed off

Tum off adjustment â€”the right margin will be ragged. The adjustment
type for the . ad request is not changed. Output lines are still filled if fill
mode is on. To turn adjusting back on (return to the previous state), use the
. ad request.

E (see Table A-2)

If No Argument:

Explanation:

Notes:

The . n f (no fill) request turns off filling. Lines in the result are neither filled
nor adjusted. The output text appears exactly as it was typed in, complete with
any extra spaces and blank lines you might type â€”this is often called 'as
is text', or 'verbatim'. No filling is mainly used for showing examples, espe
cially in computer books where you want to show examples of program source
code.

. nf and . f i â€”Turn Filling
Off and On

You should be aware that traditional typesetting people have trouble with the
concept of no filling, because their typesetting systems are geared up to fill and
adjust text all the time. When you ask for stuff to be printed exactly the way you
typed it, they have problems, especially when you want blank lines left in the
unfilled text exactly where you put them. In the world of typography, things that
don't fit into the Pmcrustean mold of filled text are often called 'displays' and
have to be handled specially.

Mnemonic:

Form of Request:

Initial Value: Filling is on by default

filling is tumed on

Fill subsequent output lines. The number register . u is 1 in fill mode and 0
in nofill mode.

If No Argument:

Explanation:

Notes: E,B (see Table A-2)

®~>~sun Revision A, of 9 May 1988

The . f i (fill) request turns on filling. If adjusting has not been turned off by a
. na request, output lines are also adjusted in the prevailing mode set by any pre
vious . ad request.

24 Usingnrof f andtrof f

Mnemonic: no fill

Form of Request:

Initial Value:

.nf
Filling is on by default

filling is tumed off

Subsequent output lines are neither filled nor adjusted. Input text lines are
copied directly to output lines without regard for the current line length.
The number register . u is 1 in fill mode and 0 in nofill mode.

E,B (see Table A-2)

If No Argument:

Explanation:

Notes:

2.3. Hyphenation When tr of f or nr of f fills lines, it takes each word'in turn from the input text
line, and puts the word on the output text line, until it finds a word that will not
fit on the outputline. At this point, trof f or nrof f tries to hyphenatethe
word. If possible, the first part of the hyphenated word is put on the output line
followed by a â€”,and the remainder of the word is put on the next line. We
should emphasize that, although the examples show text that is both filled and
justified, it is during fillingthat tro f f or nr of f hyphenateswords,not adjust
ing.

If you have words in your input text containing hyphens (such as jack-in-the-box,
or co-worker),t r of f or nro f f will, if necessary,split these wordsover two
lines, even if hyphenation is tumed off.

. nh and . hy â€”Control
Hyphenation

Normally,when you invoke t ro f f or nro f f, hyphenationis turned on, but
you can change this. The . nh (no hyphenation) request turns off automatic
hyphenation. When hyphenation is tumed off, the only words that are split over
more than one line are those that already contain hyphens. Hyphenation can be
tumed on again with the . hy (hyphenate) request.

You can give . hy an argument to restrict the amount of hyphenation that tr of f
or nroff does. The argumentis numeric. The request .hy 2 stops trof f or
nr of f fromhyphenatingthe last wordon a page.. hy 4 instructs t ro f f or
nr of f not to split the last two characters from a word; so, for example,
'repeated' will never be hyphenated 'repeat-ed'.. hy 8 requests the same thing
for the first two characters of a word; so, for example, 'repeated' will not be
hyphenated 're-peated'.

The values of the arguments are additive: . hy 12 makes sure that words like
'repeated' will never be hyphenatedeither as 'repeat-ed' or as 're-peated'.. hy
14 calls up all three restrictions on hyphenation.

A . hy 1 request is the same as the simple . hy request â€”it turns on hyphena
tion everywhere. Finally, a . hy 0 request is the same as the . nh request â€”it
turns off automatic hyphenation altogether.

>~>~sunmicrosystems
Revision A, of 9 May 1988

I t ~

Chapter 2 â€”Line Format 25

no hyphenationMnemonic:

Form of Request:
Initial Value:

.nh

If No Argument:

Explanation:

Notes:

hyphenation

.hyN
Hyphenation is on by default in mode 1.

N= l.If No Argument:

Explanation:

E (see Table A-2)Notes:

. hw â€”Specify Hyphenation
Word List

.hw pre-empt ant-eater

®~>~sun Revision A, of 9 May 1988

Mnemonic:

Form of Request:
Initial Value:

Only words that consist of a central alphabetic string surrounded by (usually
null) non-alphabetic strings are considered candidates for automatic hyphenation.
Words that were input containing hyphens (minus), em-dashes (N (em), or
hyphenation characters â€”such as mother-in-law â€”are always subject to split
ting after those characters, whether or not automatic hyphenation is on or off.

Hyphenation is on by default

hyphenation is turned off

Tum automatic hyphenation off.

E (see Table A-2)

Turn automatichyphenationon for ¹I, or off for N=0. If n=1, all words
are subject to hyphenation. If N =2, do not hyphenate last lines (ones that
cause a trap). If N =4, do not hyphenate the last two characters of a word. If
N =8, do not hyphenate the first two characters of a word. These values are
additive â€”that is, N =14 invokes all three restrictions. Note: odd values of
N (except 1) don't make sense.

If there are words that you want t ro f f or nro f f to hyphenate in some special
way, you can specify them with the . hw (hyphenate words) request. This
requesttells trof f or nrof f that you have specialcases it shouldknow about,
for example:

Now, if either of the words 'preempt' or 'anteater' need to be hyphenated, they
will appear as specified in the . hw request, regardless of what t ra f f or
nrof f 's usual hyphenation rules would do. If you use the . hw request, be
aware that there is a limit of about 128 characters in total, for the list of special
words.

26 Usingnrof f andtrof f

Summary of the . hwRequest

Mnemonic: hyphenate word

.hw verdi ...Form of Request:

Initial Value: None

If No Argument:

Explanation:

Ignored

Specify hyphenation points in words with embedded minus signs. Versions
of a word with terminal s are implied â€”that is, digâ€”it implies digâ€”its. This
list is examined initially and after each suffix stripping. The space available
is small â€”about 128 characters.

. hc â€”Specify Hyphenation
Character

Input and Output Conventionsand Character Translations,

you could shorten it, or you could insert the hyphenation character just before the
first character of each of the long words at the end of the title. The input might
look like this:

.H C "Input and Output Conventions and ~%Character ~%Translations'

(If you are using a reasonable line length, you don't need to worry about hyphe
nation occurring earlier in the title in this example.)

Here is an example of using the hyphenation character to specify acceptably
hyphenation points within a word. The word "workstation" is often mis
hyphenated because of the collection of consonants at the end of "work" and the
beginning of "station". So, your input might look like this:

works%station

>~®<sun Revision A, of 9 May 1988

A hyphenation indicator character may be embedded in a word to specify desired
hyphenation points, or may precede the word to suppress hyphenation. For
example, hyphenation looks particularly disruptive if it occurs in titles. So, if
you had a long title like:

Chapter 2 â€”Line Format 27

Summary of the . hc Request

hyphenation characterMnemonic:

Form of Request:

Initial Value:

.hc c

lf No Argument:

Explanation: Set hyphenation indicator character to c or to the default N-:. The indicator
does not appear in the output.

E (see Table A-2)Notes:

2.4.. ce â€”Center Lines of
Text

When we described "Filling and Adjusting," we showed how the text produced
by nro f f or tro f f couldbe centeredby using the . ad c request. Setting
text adjustment for centering is a fairly unusual way of getting centered text,
because the text is being filled at the same time. The more usual use for center
ing is to have unfilled lines that are centered â€”that is, each line that you type is
centered within the output line. You get lines centered via the . ce (center)
request, which centers lines of text.

If youjust use a . ce requestwithoutan argument,trof f or nrof f centersthe
next line of text:

.ce

centers the following line of text, whereas:

.ce 5

centers the following five lines of text. Filling is temporarily tumed off when
lines are centered, so each line in the input appears as a line in the output, cen
tered between the left and right margins. For centering purposes, the left margin
includes both the page offset (see later) and any indentation (also see later) that
may be in effect.

>~>~sun Revision A, of 9 May 1988

An argument of zero to the . ce request simply stops any centering that might be
in progress. So, if you don't want to count how many lines you want centered,
you can ask for some large number of lines to be centered, then follow the last of
the lines with a . ce 0 request:

28 Usingnroff andtroff

Summary of the . ce Request

center

.ce N

Centering is off by default.
N=1

Notes:

2.5..ul and . cuâ€”
Underline or
Emphasize Text

.ul
following line of text

.ul 3

sun
Revision A, of 9 May 1988mcrosysteme

Mnemonic:

Form of Request:
Initial Value:

If No Argument:

Explanation:

The '100' in the example above could be any large number that you think is
bigger than the number of lines to center.

Note that the argument to the . ce request only applies to following text lines in
the input. Lines containingnro f f or t r of f requestsare not counted.

Center the next N input text lines within the current line gine-length minus
indent). If N=O, any residual count is cleared. A break occurs after each of
the N input lines. If the input line is too long, it is left adjusted.

E,B (see Table A-2)

There are times when you want to lend emphasis to a word in a piece of text.
The normal way to do this is to place the word or piece of text in italics if you
have an italic font, or underline the word if you don't have an italic font. The
. ul (underline) request underlines alphanumericcharacters in nr o f f, and
prints those characters in the italic font in t ro f f. As with the . ce request, a
. ul request with no argument underlines a single line of text, so:

simply underlines the following line of text. Unlike . ce, though, . ul does not
turn filling off. A numeric argument to the . ul request specifies the number of
text lines you want underlined, so:

underlines the next three lines of text. As with centering, an argument of zero
. ul 0 cancels the underlining process.

Chapter 2 â€”Line Format 29

Summary of the . ul Request

underlineMnemonic:

Form of Request:

Initial Value:

.ulN
Underlining is off by default.
N=llf No Argument:

Explanation: Underline in nr of f (italicize in t r of f) the next N input text lines. Actu
ally, switch to underline font, saving the current font for later restoration;
other font changes within the span of a . ul will take effect, but the restora
tion will undo the last change. Output generated by a . t 1 request is
affected by the font change, but does not decrement N. If N >1, there is the
risk that a trap-interpolated macro may provide text lines within the spanâ€”
environment switching can prevent this.

E (see Table A-2)Notes:

As with . ce, only lines of text to be underlined are counted in the number given
to the underline request. nr of f or tr of f requests interspersedwith the text
lines are not counted.

continuously underlineMnemonic:

Form of Request:

Initial Value:

.cuN

Underlining is off by default.
N=lIf No Argument:

Explanation: A variant of . ul that underlines everycharacter in nro f f. Identical to
.ul introf f.
E (see Table A-2)Notes:

2.6.. u f â€”Underline Font nr of f automatically underlines characters in the underline font, specifiable
with a . u f (underline font) request. The underline font is normally Times Italic
and is mounted on font position 2. In addition to the . f t (font) request and the
Nf F, the underline font may be selected by the . u 1 (underline) request and the
. cu (continuous underline) request. Underlining is restricted to an output
device-dependent subset of reasonable characters.

~~>~sun
micros ystems

Revision A, of 9 May 1988

Another form of underlining is called up with the . cu request, and asks for con
tinuous underlining. This is the same as the . ul request, except that all charac
ters are underlined. Again, if you are using t r o f f the characters are printed in
the italic font instead of underlined. There is a way to get characters underlined
in t ro f f, and this technique is explained later in this manual.

30 Usingnrof f andtrof f

Mnemonic: underline font

.uf F
Italic

Italic

Revision A, of 9 May 1988

Form of Request:

Initial Value:

If No Argument:

Explanation: Set underline font to F. In nro f f, F may not be on position 1 (initially
Times Roman).

~~>~sun
microeyStemS

Page Layout

Page Layout 33

3.1. Margins and Indentations

. po â€”Set Page Offset

. 11 â€”Set Line Length

35

35

35

. in â€”Set Indent 36

. t i â€”Temporarily Indent One Line ...

3.2. Page Lengths, Page Breaks, and Conditional Page Breaks

. pl â€” Set Page Length ..

. bp â€” Start a New Page ...

38

41

41

41

. pn â€” Set Page Number ...

. ne â€” Specify Space Needed ...

3.3. Multi-Column Page Layout by Marking and Returning

. mk â€”Mark Current Vertical Position,..............................

42

42

43

43

. rt â€”Return to Marked Vertical Position

' ' ' ' NAN4%4 SNN ' ' +4Qh ' Nv@M ' h~,'I NKCvhk h%NRWKM14NCNIh hCNXKC'RCNWh4MNR%hRNAN v N ' 'h@~hhWKEPSh'4hMIWN' h%IhWKASNS

Page Layout

Now we get into the subject of altering the physical dimensions of the layout of
text on a page. There are two major parts to page control, and they can be
roughly divided into controlling the horizontal aspects of lines, and controlling
the vertical aspects of the page dimensions.

Deals with subjects such as the location of the left margin, the location of the
right margin (the length of the line), and indentation of lines.

Horizontal page control

Deals with the physical length of the page, when pages get started, and whether
there's enough room on the current page for a block of text. Page numbering is
also covered in this area.
These topics are covered in this section. We deal first with horizontal page con
trol, then with the vertical aspects of page control.

Verticalpage control

We should explain how tr of f thinks of a page. The next page contains a
diagram of a page of text, and here we explain what some of the terms mean:

is the distance from the physical edge of the paper to the place where all text
begins. In normal-world terms, this distance is called the 'left margin'. Nor
mally you only set the page-offset at the very start of a formatting job and you
never change it again.

Page Offset

is the distance from the left margin (or page-offset) to the right edge of the text.
The line-length is relative to the page-offset. In some respects, 'line-length' is a
bit of a misnomer, because once you have set the page-offset at the start of the
document (and assuming you never change it), the line-length really nails down
the position of the right margin and has little to do with the length of the line.

Line Length

is where the left edge of your text starts. Normally the indent is zero, so that the
edge of the text is where the page-offset is, but you can change the indent so that
the text starts somewhere else. Note that the line-length is not affected by the
indent â€”that is, indenting the text doesn't change the position of the right mar
gin.

Indent

is the distance from the extreme top of the page to the extreme bottom of the
page, that is, the page length is the physical length of the paper.

Page Length

®~>~sun Revision A, of 9 May 198833

The following figure is a diagram of a page of text with the relevant parts pointed
out. This diagram is a scale-model of an 8.5 x 11-inch sheet of paper, so while
the numbers quoted in the text below are expressed in 'real' units, the actual
dimensions are scaled.

34 Usingnrof f andtrof f

Figure 3-1 Layout of a Page

right headercenter headerleft header

This paragraph has the page-offset set to give a left margin of approximately one inch (scaled). The
line-length is set to 6.5 inches (scaled). This means there is a one-inch (scaled) left margin and a one
inch (scaled) right margin. The indent is set to zero so that the current left margin is at the same place
as the page-offset.

This paragraph has the page-offset and the line-length the same as the last paragraph, but
we' ve used a . in +0 . 5i request to indent the left margin by half an inch â€”the current left
margin is now page-offset+ indent. Note that the position of the right margin remains the
same as in the previous paragraph â€”only the left margin moved, so the effective length of the
lines is shorter.

This paragraph now has the left margin back to the original position because we inserted a . in
-0 . 5i request before it.

This is the regular old paragraph where the first line is indented and the rest of the text in the para
graph is flushed to the left margin. The first line was indented via a . t i +0 . 2 5i request to give a
temporary indent of the first line.

~ This paragraph is an example of an 'item' or 'bulleted' or 'hanging' paragraph, where the left mar
gin is moved to the right, and the 'bullet' or 'tag' is moved back to the old left margin. This effect
was achieved via a . in +0 . 2 5i request to move the left margin rightward, and then the 'bullet'
was preceded by a . t i -0 . 25i request to get a temporary indent to the old position of the left
margin.

Finally, note that tab stops are relative to the current left margin as we show here with a couple of
blocks of text with different indents. Note that the positions of the tab stops are shown with exclama
tion point (!) characters:
I I I I

You can see by the line of ! marks above where the tab stops are.

Now we have another block of text here but with the indent moved over a half-inch. As you
can see by the line of ! marks below, the tab stops have moved with the left margin:
I 'I ! I I I

left footer right footercenter footer

®~>~sunmhrosystems Revision A, of 9 May 1988

This paragraph could have the left margin moved, not by indenting, but by changing the page-offset via
a . po +0 . 5 i request. Now all text would be moved to the left, and because the line-length hasn' t
changed, the right margin would move as well. The example can't show this because page offset is
measured from the margin, and because this example is in a box, changing the page offset within the
box is meaningless.

Chapter 3 â€”Page Layout 35

3.1. Margins and
Indentations

As we said above, the positions of the left-hand and right-hand margins are con
trolled via the page-offset and the line-length. After that, any movements of the
left-hand margin are controlled via indent and temporary indent requests. These
topics are discussed in the following subsections.

. po â€”Set Page Offset The usable page width on the Graphic Systems phototypesetter is about 7.54
inches, beginning about 1/27 inch from the left edge of the 8 inch wide, continu
ous roll paper. The physical limitations on nr o f f output are output-device
dependent.

In general, you only set the page-offset once in the course of formatting a docu
ment. Setting the page-offset determines the position of the physical left margin
for the text, and then you (almost) never change the page-offset again â€”all
indentation is done via . in (indent) requests and . t i (temporary indent)
requests. We talk about these requests later in this part of the manual.

The position of the physical right margin for the text is determined by the line
length relative to the page-offset. The . 11 (line length) request is discussed
below.

Mnemonic: page offset

Form of Request:

Initial Value:

.po~
0 in nrof f, 26/27inchin trof f.

If No Argument:

Explanation:

Previous value

Set the current leftmargin to ~. In tr of f the initial value is 26/27inch,
which provides about one inch of paper margin including the physical
typesettermarginof 1/27inch. In trof f the maximumgine
length)+(page-offset) is about 7.54 inches. In nro f f the initial page-offset
is zero.

Notes: v (see Table A-2)

The current page-offset is available in the . o register.

. 11 â€”Set Line Length t r o f f gives you full control over the length of the printed lines. By the way,
typographers don't use terms like 'line-length*, they use the word 'measure' to
mean the length of a line. They always measure vertical distances in 'picas'.

Nevertheless, to set the line-length in t ro f f, use the . 11 gine length) request,
as in

®~>~sunmicrosystems
Revision A, of 9 May 1988

The page-offset is the distance from the extreme left-hand edge of the paper to
the left margin of your text. When you use 'standard' 8.5xl 1-inch paper, it is
customary to have the left and right margins be one inch each, so that the physi
cal length of the printed lines are 6.5 inches â€”or you'd say that the measure was
39 picas if you' re a typographer and can't handle inches.

36 Usingnrof f andtrof f

.11 6i

As with the . sp request, the actual length can be specified in several waysâ€”
inches are probably the most intuitive unless you live in one of the very few
places in the world where they don't use inches.

The maximum line-length provided by the typesetter is 7.5 inches, by the way.
To use the full width, you have to reset the default physical left margin ('page
offset'), which is normally slightly less than one inch from the left edge of the
paper. This is done by the . po (page offset) request discussed above.

.po 0

sets the offset as far to the left as it will go.

Summary of the . 11 Request

line length
.11~

Mnemonic:

Form of Request:

Initial Value: 6.5 inches

Previous valueIf No Argument:

Explanation: Set the line-length to N where N is the value of the line length, or an incre
ment or decrement for the line-length. In t r o f f the maximum gine
length)+(page-offset) is about 7.54 inches.

Notes: E, m (see Table A-2)

. in â€”Set Indent Given that you' ve got your page-offset and line-length correctly set for a docu
ment to establish the position of the left and right margins, you now make all
other movements of the left margin via the . in (indent) request discussed here,
and via the . t i (temporary indent) request described below.

The . in (indent) request indents the left margin by some specified amount fmm
the page-offset. This means that all the following text will be indented by the
specified amount until you do something to change the indent. To get only the
first line of a paragraph indented, you don't use the . in request, but you use the

®~>~sun Revision A, of 9 May 1988

Note that the line-length includes indent space but not page-offset space. The
line-length minus the indent is the basis for centering with the . c e request. The
effect of the . 11 request is delayed, if a partially-collected line exists, until after
that line is output. In fill mode, the length of text on an output line is less than or
equal to the line-length minus the indent. The current line-length is available in
the . 1 number register. The length of three-part titles produced by a . t 1
request (see Chapter 7, Titles and Page Numbering) is independent of the line
length set by the . 11 request â€”the length of a three-part title is set by the . 1t
request.

Chapter 3 â€”Page Layout 37

. t i (temporary indent) request described below.

As an example, a common text structure in books and magazines is the 'quota
tion' â€”a paragraph that is indented both on the right and the left of the line. A
quotation is used for precisely that purpose, namely to set some text off from the
rest of the copy. We can achieve such a paragraph by using the . j.n request to
move the left margin in, and the . 11 request to move the right margin leftward:

When you format the above construct you get a block that looks like this:

I was to learn later in life that we tend to meet any new situation
by reorganizing; and a wonderful method it can be for creating
the illusion of progress while producing confusion, inefficiency,
and demoralization.

Notice the use of '+' and 'â€”' to specify the amount of change. These change the
previous setting by the specified amount rather than just overriding it. The dis
tinction is quite important: . 11 +2 . 0 i makes lines two inches longer, whereas
. 11 2 . 0i. makes them two inches long:

I was to leam later in life that
we tend to meet any new situa
tion by reorganizing; and a
wonderful method it can be for
creating the illusion of progress
while producing confusion,
inefficiency, and demoraliza
tion.

With . i.n, . 11, and .po, the previous value is used if no argument is specified.
So, in the above example, the lines:

~ Petronim Arbuer, A.D. 60.

>~>~sun
micros ystsme

Revision A, of 9 May 1988

38 Usingnrof f andtrof f

.li +0.5i

.in -0.5i

could have been

.in

and would have had the same effect.

Note that the line-length includes indent space but not page-offset space. The
line-length minus the indent is the basis for centering with the . c e request. The
effect of the . in request is delayed, if a partially collected line exists, until after
that line is output. In fill mode the length of text on an output line is less than or
equal to the line-length minus the indent. The current indent is available in the
. i number register.

indentMnemonic:

Form of Request:

Initial Value:

.in&

If No Argument:

Explanation:

Previous value

Set the indent to ~ whereN is the value of the indent, or an increment or
decrement on the current value of the indent. The . i n request causes a
break.

Notes: E, m (see Table A-2)

. t i â€”Temporarily Indent
One Line

The . t i (temporary indent) request indents the next text line by a specified
amount.

A common application for . t i is where the first line of a paragraph must be
indented just like the one you' re reading now. You get such a construct with a
sequence like:

and when the paragraph is formatted, the first line of the paragraph is
indented by three specified units just like this one. Three of what? The default
unit for the . ti request, as for most horizontally-oriented requests â€” . 11 gine
length), . in (indent), and . po (page offset) â€”is ems. An em is roughly the

>~>~sun Revision A, of 9 May 1988

Chapter 3 â€”Page Layout 39

width of the letter 'm' in the current point size. Thus, an em is alwayspropor
tiona1to the point size you are using. An em in size p is the number of p points
in the width of an 'm'. Here's an em followed by an em dash in several point
sizes to show why this is a proportional unit of measure. You wouldn't want a
20-point dash if you are printing the rest of a document in 12-point text. Here' s
12-point text:

m
lâ€” I

Here's 16-point text:

m
Iâ€” I

And here's 20-point text:

Thus a temporary indent of . t i 3 in the current point size results in an indent
of three m's width or lmmml.

Although inches are usually clearer than ems to people who don't set type for a
living, ems have a place: they are a measure of size that is proporlional to the
current point size. If you want to make text that keeps its proportions regardless
of point size, you should use ems for all dimensions. Ems can be specified as
scale factors directly, as in . t i 2 . 5m.

Lines can also be indented negatively if the indent is already positive:

.ti -0.3i

~<~sun
mtcrosystems

Revision A, of 9 May 1988

moves the next line back three tenths of an inch. A common text structure found
in documents is 'itemized lists' where the paragraphs are indented but are set off
by 'bullets' or some such. Item lists are often called 'hanging paragraphs'
because the first line with the item on it 'hangs' to the left. For example, you
could type the following series of lines like this (we' ve deliberately shortened the
length of the line to illustrate the effects):

40 Usingnrof f andtrof f

shorten linesfor this example
indent left margin by a fifth inch
set a tab for the hanging indent
center a line of title

.11 4.0i

.in +0.2i

.ta +0.2i

Summary of the . t i Request

temporary indent
.ti &
0

Notes:

>~>~sun Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

.ce
Indent Control Requests
.ti -0.2i moveleftmarginbacktemporarily
N(bu tab the NfLNs.pohfP request sets the
page-offset to the desired amount thereby making
sure the left margin is correct.
.ti -0.2i moveleftmarginbucktemporarily
'i (bu tab the NfLN&.inhfP request sets the
indent from the left margin for all following text.
.ti -0.2i moveleftmarginbacktemporarily
N(bu tab the NfLNs.tihfP request sets the indent for
the following line of text only, thus providing for
fancy paragraph effects.

We had to play some tricks with tabs as well to get everything lined up, but that
won't affect the main point of the discussion. The tab markers in the lines above
show where there's a tab character, and the N(bu sequence at the start of the
lines gets you a bullet (~) like that â€”we' ll show the special character sequences
later in this manual. When you format the text as shown in the example above,
you get this effect:

Indent Control Requests
~ the .po request sets the page-offset to the desired amount

thereby making sure the left margin is correct.
~ the . in request sets the indent from the left margin for all

following text.
the . t i request sets the indent for the following line of text
only, thus providing for fancy paragraph effects.

Remember that the line-length includes indent space but not page-offset space.
The effect of a . t i request is delayed, if a partially collected line exists, until
after that line is output. In fill mode the length of text on an output line is less
than or equal to the line-length minus the indent. The current indent is available
in the . i register.

Ignored

Indent the next output text line a distance+~ with respect to the current
indent. The resulting total indent may not be negative. The current indent
is not changed. The . t i request causes a break.

E, m (see Table A-2)

Chapter 3 â€”Page Layout 41

.pl â€”Set Page Length

Summary of the . pl Request

page length
.pl~

Mnemonic:

Form of Request:

Initial Value: 11 inches

11 inchesIf No Argument:

Explanation:

Notes:

.bp â€”Start a New Page

®~>~sun Revision A, of 9 May 1988

3.2. Page Lengths, Page
Breaks, and
Conditional Page
Breaks

Neither nro f f nor tr of f provide any facilities for top and bottom margins on
a page, nor for any kind of page numbering at all. The â€”ms macro package
described in a previous section of this manual sets things up so that reasonable
pagination with top and bottom margins and page numbers is done automatically.

If you want top and bottom margins whenusing raw tr of f or nr of f, youhave
to do some tricky stuff. The tricky stuff is done via traps and macros. The trap
tells tro f f or nr of f whento do someprocessing for the margins (for exam
ple, you might set a trap to start the bottom margin 0.75 inches from the bottom
of the page), and the macro defines what to do when the trap is sprung. It is con
ventional to set traps for them at vertical positions 0 (top) and â€”N (N from the
bottom).

A pseudo-page transition onto thefirst page occurs either when the first break
occurs or when the first non-diverted text processing occurs. Arrangements for a
trap to occur at the top of the first page must be completed before this transition.

In the following tables, references to the current diversion mean that the mechan
ism being described works during both ordinary and diverted output (the former
considered as the top diversion level). Refer to Chapter 10 for more information
on diversions.

Just as the . po, . 11, . in, and . ti requests changed the horizontal aspects of
the page, the .pl (page length) request determines the physical length of the
page. In general you won't need to use the .pl request because the standard set
ting is right for all but the most esoteric purposes.

Set page length to ~. The internal limitation is about 75 inches in t r of f
and about 136 inches in nro f f. The current page length is available in the
.p number register.

v (see Table A-2)

This request causes a break and skips to a new page.

42 Usingnrof f andtrof f

Summary of the . bp Request

begin page

.bp~
N=1

Mnemonic:

Form of Request:

Initial Value:

lf No Argument:

Explanation:

Increment current page number by 1.

Eject the current page and start a new page. If+~ is given, the new page
number will be ~. Also see the . ns (no space) request. The . bp request
causes a break.

v (see Table A-2)Notes:

. pn â€”Set Page Number

Summary of the . pn Request

page number

.pn~
N=l

Ignored

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation: The next page (when it occurs) will have the page number +~. A . pn
request must occur before the initial pseudo-page transition to affect the
page number of the first page. The current page number is in the -: register.

. ne â€”Specify Space Needed In some applications you need to make sure that a few lines of text all appear
together on the same page. There are several ways to achieve this ranging from
simple to complicated. One of the simplest ways is to use the . ne (need) verti
cal space request:

The arrangement of the . ne request specifies that if there are many lines of text
in (say) a paragraph, at least three of the lines will appear together on the same
page, otherwise a new page will be started. The object of this exercise is to avoid
what typographers call 'orphans' â€”that is, the first line of a paragraph appearing

®~>~sun
micros ystems

Revision A, of 9 May 1988

Chapter 3 â€”Page Layout 43

all alone and lonely on the bottom of a page, while the rest of the paragraph
appears on the next page. This is generally considered to be somewhat ugly and
should be avoided if possible. By itself, tr of f is too stupid to recognize the
existence of orphans (indeed of any text constructs at all), but the facilities are
there to avoid these situations. In general, macro packages such as the â€”ms
macro package discussed elsewhere have 'begin paragraph' macros such as . PP
which take care of controlling orphans.

Summary of the . ne Request

needMnemonic:

Form of Request:
Initial Value:

.ne N

Not applicable
lvIf No Argument:

Explanation: Need N vertical space. If the distance, D, to the next trap position is less
than N, a forward vertical space of size D occurs, which will spring the trap.
If there are no remaining traps on the page, D is the distance to the bottom
of the page. If D < V, another line could still be output and spring the trap.
In a diversion, D is the distance to the diversion trap, if any, or is very large.

Notes: v (see Table A-2)

3.3. Multi-Column Page
Layout by Marking
and Returning

.mk â€”Mark Current
Vertical Position

Mnemonic:

Form of Request:

Initial Value:

.mk R

Not applicable

If No Argument:

Explanation:

R is an internal register

Mark the current vertical place in an internal register (both associated with
the current diversion level), or in register R, if given. See the . r t request.

®~>~sun Revision A, of 9 May 1988

It is possible to achieve multi-columnoutput in tro f f or nr of f via the .mk
(mark) and . r t (return) requests. Other useful special effects can also be
obtained using these requests, but one of the common uses is to do multi-column
output. Basically, the .mk request marks the current vertical position on the
page (you can place the result of the mark in a register). You do a column's
worth of output, then when you get to the end of the page, instead of starting the
next page, you return (via the . r t request) to the marked position, set up a new
indent and line-length, and crank out another column.

44 Usingnrof f andtroff

. rt â€”Return to Marked
Vertical Position

Summaryof the . rt Request

Mnemonic:

Form of Request:

Initial Value:

.rt W

If No Argument:

Explanation:

~®~sun
micros ystems

Revision A, of 9 May 1988

Not applicable

return to place marked by a previous .mk request.

Return upward only to a marked vertical place in the current diversion. If
~ (with respectto the currentplace) is given, the place is ~ from the top
of the page or diversion or, if N is absent, to a place marked by a previous
.mk. Note that the . sp request (refer to the chapter Line Spacing and
Character Sizes) may be used in all cases instead of . r t by spacing to the
absolute place stored in a explicit register, for example, using the sequence
.mkR.... sp hnRu.

Line Spacing and Character Sizes 47

4.1.. sp â€” Space Vertically ..

4.2.. ps â€”Change the Size of the Type

4.3.. vs â€”Change Vertical Distance Between Lines

4.4.. 1s â€”Change Line Spacing .

4.5. ~x Function â€”Get Extra Line-Space

4.6.. sv â€”Save Block of Vertical Space

4.7.. os â€”Output Saved Vertical Space

4.8.. n s â€” Set No Space Mode ...

4.9.. r s â€”Restore Space Mode,.......................

4.10.. s s â€”Set Size of Space Character

4.11.. cs â€”Set Constant-Width Characters

47

48

50

51

52

52

53

53

53

54

Line Spacing and Character Sizes

Line Spacing and Character Sizes

4.1.. sp â€”Space
Vertically

You get extra vertical space with the . sp (space) request. A simple

.sp

request with no argument gives you one extra blank line (one . vs, whatever that
has been set to). Typically, that's more or less than you want, so . sp can be fol
lowed by information about how much space you wantâ€”

.sp 2i

means 'two inches of vertical space'.

.sp 2p

means 'two points of vertical space', and

.Sp 2

means 'two vertical spaces' â€”two of whatever . vs is set to (this can also be
made explicit with . sp 2v); t ro f f also understands decimal fractions in most
places, so

.sp 1.51

is a space of 1.5 inches. These same scale factors can be used after the . vs
request to define line spacing, and in fact after most requests that deal with physi
cal dimensions.

It should be noted that all size numbers are converted internally to 'machine
units', which are 1/432 inch (1/6 point). For most purposes, this is'enough reso
lution that you don't have to worry about the accuracy of the representation. The
situation is not quite so good vertically, where resolution is 1/144 inch (1/2
point).

sun 47 Revision A, of 9 May 1988
micros ystems

48 Usingnrof f andtrof f

Mnemonic: space

Form of Request:

Initial Value:

.spN
Not applicable

N=1VIf No Argument:

Explanation: Space verticaHy in either direction. If N is negative, the motion is backward
(upward) and is limited to the distance to the top of the page. Forward
(downward) motion is truncated to the distance to the nearest trap. If the
no-space mode is on, no spacing occurs (see . n s, and . r s below).

B, v (see Table A-2)Notes:

4.2.. ps â€”Change the
Size of the Type

In t ro f f, you can change the physical size of the characters that are printed on
the page. The . ps (point size) request sets the point size. One point is 1/72
inch, so 6-point characters are at most 1/12-inch high, and 36-point characters are
1/2-inch. t r o f f and the machine it was originally designed for understand 15
point sizes, listed below.

6 point: Pack my hoa with Svu dmun liquor juaa
7 point: Pack my box with five dozen liquor jugs.
8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor jugs
11 point: Pack my box with five dozen liquor jugs.
12 point: Pack my box with five dozen liquor jugs
14 point: Pack my box with five dozen liquor jugs.
16 point: Pack my box with five dozen liquor jugs.
18 point: Pack my box with five dozen liquor jugs.
20 point: Pack my box with five dozen liquor jugs.
22 point: Pack my box with five dozen liquor jugs.
24 point: Pack my box with five dozen liquor jugs.
28 point: Pack my box with five dozen liquor

36 point: Pack my box with five doz
If the number after a . ps request is not one of these legal sizes, it is rounded up
to the next valid value, with a maximum of 36. If no number follows . ps,
tr of f reverts to the previoussize, whateverit was. tr of f begins with point
size 10, which is usually fine. This document is in 1l-point.

®~>~sun Revision A, of 9 May 1988

I I ' ~ ' I

Chapter 4 â€”Line Spacing and Character Sizes 49

The point size can also be changed in the middle of a line or even a word with an
in-line size change sequence. In general, text which is in ALL CAPITALS in the
middle of a sentence tends to loom large over the rest of the text and so it is cus
tomary to drop the point size of the capitals so that it looks like ALLCAPITALs
instead. You use the Ns (for size) sequence to state what the point size should
be. You can state the size explicitly as in this line hete:

The NsSPOWERNs0of a hs8SUNks0

to produce the output line like:

The powHRof a sUN

As above, Ns should be followed by a legal point size, except that Ns0 makes
the size revert to its previous value (before you just changed it).

Note that because there are a fixed number of point sizes that the system knows
about, the sequence Ns 96 gets you a nine-point6 instead of 96~int type like you
wanted, whereas the sequence Ns180 gets you an 18-point U instead of 180
point type.

The Ns-2POWERNs+2 of a ~s-2SUN~s+2

to produce the output line like:

The powER of a sUN

Relative size changes have the advantage that the size difference is independent
of the starting size of the document. Of course this stuff only works really well
(in typography terms) when the changes in size aren't too violently out of whack
with the point size â€”a change of two points in 36-point type doesn't have quite
the same impact as it does for 12-point type â€”there is a question of the weight
of the type, but by the time you get to that stuff you' ll be much more knowledge
able about typography.

The current size is available in the . s number register. nr of f ignores type size
control.

®~>~sun Revision A, of 9 May 1988

Stating the point size in absolute terms as above is not always a good ideaâ€”
what you really want is for the changed size to be relative to the surrounding text,
so that if your document is in 11-point type like this one, you'd really like the
bigger (or smaller stuff) to be a couple of points different without your having to
know explicitly what the actual size is. So in this case, you can use a relative
size-change sequence of the form k s+ n to raise the point size, and Ns â€”n to
lower the point size. The number n is restricted to a single digit. So we can
rework our previous example from above like this:

50 Usingnrof f andtrof f

point size

.ps~
Mnemonic:

Form of Request:

Initial Value: 10 points

Previous valueIf No Argument:

Explanation: Setpoint-sizeto~. Alternativelyembed NsNor Ns~. Anypositive size
value may be requested; if invalid, the next larger valid size will result, with
a maximum of 36. The sequence

.ps +N

.ps N

works the same as

.ps +N

.ps â€”N

because the previous requested value is also remembered. Ignored in
nrof f.
E (see Table A-2)Notes:

4.3.. vs â€”Change
Vertical Distance
Between Lines

The other parameter that determines what the type looks like is the spacing
between lines, which is set independently of the point size. Vertical spacing is
measured from the bottom of one line to the bottom of the next. The bottom of
the text on a line is often called the baseline. The vertical spacing is often called
leading (pronounced 'led-ing') and comes from the days when text was produced
with lead slugs instead of electronic widgets like laser printers.

You control vertical spacing with the . vs (vertical spacing) request. For run
ning text, it is usually best to set the vertical spacing about 20% bigger than the
character size. For example, so far in this document, we have used 11-point type
with a vertical line-spacing of 13 points between baselines. Typographers call
this 'l l on 13', so when you hear some one say that a book is set in 'll on 13',
you know that it's 11-point type with 13-point vertical spacing.

So, somewhere at the start of this document, the macro package that formats this
document for us had requests like:

.ps lip

.vs 13p

Had we set the point size and the vertical spacing like this:

.ps lip

.vs lip

®g>~sun Revision A, of 9 May 1988

/ I ~ I P I

Chapter 4 â€”Line Spacing and Character Sizes 51

Point size and vertical spacing make a substantial difference in the amount
of text per square inch. This is 12 on 14.
Point siss and «srtical spacing nudm a su stantial difference in the amount of text per wpuue inctc For example, 10 on 12 uses about twice as much
space as 7 on g. This is 6 ou 7, which is even smaller. It pacha a lot nurm words per lim, but you can go blind trying to mad it.

When used without arguments, both .ps and . vs revert to the previous size and
vertical spacing respectively.

The vertical spacing (V)between the base-lines of successive output lines can be
set using the . vs request with a resolution of 1/144inch = 1/2 point in t ro f f,
and to the output device resolution in nro f f. Vmust be large enough to accom
modate the character sizes on the affected output lines. For the common type
sizes (9-12 points), usual typesetting practice is to set V to 2 points greater than
the point size; tro f f default is 10-point type on a 12-point spacing. This docu
ment is set in 11-point type with a 13-point vertical spacing. The current Vis
available in the . v number register.

Summary of the . vs Request

vertical spacing
.vs N

Mnemonic:

Form of Request:

Initial Value: 1/6inchin nrof f, 12pointsin trof f.
Previous valueIf No Argument:

Explanation: Set vertical base-line spacing size V. Transient extra vertical space availablewithtax� 'N(seesectiononNxFunction).
Notes: E, p (see Table A-2)

4.4.. 1s â€”Change Line
Spacing

Multiple-V line separation (for instance, double spacing) can be requested with
the . 1s gine spacing) request.

®~>~sun Revision A, of 9 May 1988

the running text would look like this. After a few lines, you will agree it looks a
little cramped. The right vertical spacing is partly a matter of taste, depending on
how much text you want to squeeze into a given space, and partly a matter of
traditional printing style. By default, t ro f f uses 10 on 12.

52 Usingnrof f andtrof f

line spacing
.1s N

Mnemonic:

Form of Request:
Initial Value: N=l

Previous valueIf No Argument:

Explanation: Set line spacing to ~. Nâ€”1 Vs (blank lines) are appended to each output
text line. Appended blank lines are omitted, if the text or previous appended
blank line reached a trap position.

E (see Table A-2)Notes:

4.5. Nx Function â€”Get
Extra Line-Space

If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function
Nx'N ' can be embedded in or attached to that word. In this and other functions
having a pair of delimiters around their parameter (here '), the delimiter choice
is arbitrary, except that it can't look like the continuation of a number expression
for ¹ If N is negative, the output line containing the word will be preceded by N
extra vertical space; if N is positive, the output line containing the word will be
followed by N extra vertical space. If successive requests for extra space apply
to the same line, the maximum values are used. The most recently used post-line
extra line-space is available in the . a register.

4.6.. sv â€”Save Block of
Vertical Space

A block of vertical space is ordinarily requested using the . sp (space) request,
which honors the no-space mode and which does not space past a trap. A con
tiguous block of vertical space may be reserved using the . s v request (see
below).

Mnemonic: save space

Form of Request:

Initial Value:

.svN
Not applicable
N= IVlf No Argument:

Explanation: Save a contiguous vertical block of size N. If the distance to the next trap is
greater than N, N vertical space is output. No-space mode has no effect. If
this distance is less than N, no vertical space is immediately output, but N is
remembered for later output (see the . os request). Subsequent . sv
requests will overwrite any still-remembered N.

v (see Table A-2)Notes:

®~>~sun Revision A, of 9 May 1988

g i ~ig

Chapter 4 â€”Line Spacing and Character Sizes 53

4.7.. Os â€”Output Saved
Vertical Space

output saved spaceMnemonic:

Form of Request:

Initial Value:

.OS

Not applicable

Output saved vertical spaceIf No Argument:

Explanation; Output saved vertical space. No-space mode has no effect. Used to finally
output a block of vertical space requested by an earlier . Sv request.

4.8.. ns â€”Set No Space
Mode

Mnemonic: no-space mode

Form of Request:
Initial Value:

.ns

Not applicable

Tum on no-space modeIf No Argument:

Explanation: Tum on no-space mode â€”When on, the no-space mode inhibits . Sp
requests and . bp requests without a next page number. The no-space mode
is tumed off when a line of output occurs, or with . r s.

Notes: D (see Table A-2)

4.9.. r s â€”Restore Space
Mode

Mnemonic: restore space mode

Form of Request:

Initial Value:

.ZS

Not applicable

Tum off no-space mode

Restore spacing â€”turn off no-space mode.

D (see Table A-2)

If No Argument:

Explanation:

Notes:

®~>~sun
micros ystems

Revision A, of 9 May 1988

I I ' ~ ' I

54 Usingnrof f andtrof f

4.10.. s s â€”Set Size of
Space Character

space-character sizeMnemonic:

Form of Request:

Initial Value:

.ssN
12/36 em

If No Argument:

Explanation:

Notes:

4.11.. cs â€”Set Constant
Width Characters

Summary of the . cs Request

constant spacing
.cs FNM
Off

Notes:

>~>~sunmicrosystems
Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Ignored

Set space-character size to N/36 ems. This size is the minimum word spac
ing in adjusted text. Ignored in nzo f f.

E (see Table A-2)

Ignored

Constant character space (width) mode is set on for font F (if mounted); the
width of every character is taken as N/36 ems. If M is absent, the em is that
of the character's point size; if M is given, the em is M-points. All affected
characters are centered in this space, including those with an actual width
larger than this space. Special Font characters occurring while the current
font is F are also so treated. If N is absent, the mode is turned off. The
mode must be still or again in effect when the characters are physically
printed. Ignored in nr of f .

P (see Table A-2)

57

5.1.. ft â€”SetFont

5.5. Character Set 61

5.6. Fonts 62

62

Fonts and Special Characters

Fonts and Special Characters

5.2.. f p â€”Set Font Position

5.3.. f z â€”Force Font Size

5.4.. bd â€”Artificial Boldface

5.7.. 1g â€”Control Ligatures

58

59

59

60

tr o f f and the typesetter allow four different fonts at any one time. Normally
three fonts (Times Roman, italic and bold) and one collection of special charac
ters are permanently mounted.

The Greek, mathematical symbols, and miscellany of the special font are listed in
Appendix B, Font and Character Examples.

tro f f prints in Roman unless told otherwise. To switch into bold, use the . f t
(font) request:

.ft B

and for italics,

To return to Roman, use . f t R; to return to the previous font, whatever it was,
useeither.ft Porjust .ft.

Revision A, of 9 May 198857®~®sun

Fonts and Special Characters

58 Usingnroff andtroff

5.1.. ft â€”SetFont

font

.ftF

Notes:

The 'underline' request

.ul

boldface text

is produced by the input

NfBboldNfIfacehfR text

.fp 3 H

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Roman

Previous Font

Change font to F. Alternatively, embed NfF. The font name P is reserved
to mean the previous font.

E (see Table A-2)

makes the next input line print in italics.. ul can be followedby a count to indi
cate that more than one line is to be italicized. Refer to Chapter 2 for a more
detailed description of the . ul request.

Fonts can also be changed within a line or word with the in-line request Nf:

If you want to do this so the previous font, whatever it was, is left undisturbed,
insert extra in-line Nf P commands, like this:

NfBboldhfPhfIfacehfPNfR texthfP

Because only the immediately previous font is remembered, you have to restore
the previous font after each change or you lose it. The same is true of .ps and
. vs when used without an argument.

There are other fonts available besides the standard set, although you can still use
only four at any given time. The . f p (font position) request tells t ro f f what
fonts are physically mounted on the typesetter:

says that the Helvetica font is mounted on position 3. Appropriate . f p requests
should appear at the beginning of your document if you do not use the standard
fonts.

>~>~sunmicrosystems

Chapter 5 â€”Fonts and Special Characters 59

5.2.. fp â€”Set Font
Position

Summary of the . fp Request

font position

.fpNF
R,I,B,S

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation;

Ignored

Font position â€”this is a statement that a font named F is mounted on posi
tion N (1-4). It is a fatal error if F is not known. The phototypesetter has
four fonts physically mounted. Each font consists of a film strip that can be
mounted on a numbered quadrant of a wheel. The default mounting
sequence assumed by tro f f is R, I, B, and S on positions 1, 2, 3 and 4.
Any . fp request specifying a font on some position must precede . f z
requests relating to that posifion.

5.3.. f z â€”Force Font Size

Summary of the . f z Request

Mnemonic: font size

Form of Request:

Initial Value:

. fz SFN
None

If No Argument:

Explanation:

None

Forces font F or S for special characters to be in size N. A . f z 3 â€”2
causes implicit'e â€”2 every time font 3 is entered, and a matching 'v+2 when
left. Same for special font characters that are used during F. Use S to han
dle special characters during F .. f z 3 â€”3 or . f z S 3 â€”0 causes
automatic reduction of font 3 by 3 points while special characters are not
affected. Any . f p request specifying a font on some position must precede
. f z requests relating to that position.

There is also a way to get 'synthetic' bold fonts by overstriking letters with a
slight offset. Look at the . bd request.

®~>~sun Revision A, of 9 May 1988

It is possible to make a document relatively independent of the actual fonts used
to print it by using font numbers instead of names; for example, Nf 3 and . f t 3
mean 'whatever font is mounted at position 3', and thus work for any setting.
Normal settings are Roman font (R) on font position 1, italic (I) on position 2,
bold (B) on position 3, and special (S) on position 4 â€”the mnemonic 'R I B S'
might help you remember.

60 Usingnrof f andtrof f

5.4.. bd â€”Artificial
Boldface

boldMnemonic:

Form of Request:

Initial Value:

.bdFN
Off

No Emboldening

Artificially embolden characters in font F by printing each one twice,
separated by Nâ€”1 basic units. A reasonable value for N is 3 when the char
acter size is in the vicinity of 10 points. If N is missing the embolden mode
is turned off. The mode must be still or again in effect when the characters
are physically printed. Ignored in nro f f .
.bd SFN

If No Argument:

Explanation:

Form of Request:

Explanation: Embolden characters in the special font whenever the current font is F. The
mode must be still or again in effect when the characters are physically
printed.

P (see Table A-2)Notes:

Special characters have four-character names beginning with N(, and they may
be inserted anywhere. For example,

'/4 + '/z = s/4

is produced by

N(14 + N(12 = N(34

In particular, Greek letters are all of the form N(*x, where x represents an upper
or lower-case Roman letter reminiscent of the Greek. Thus to get

Z(ax))

in raw tro f f wehaveto type

4 (*S (N (*ah (muN (*b) K(â€”> N(if

That line is unscrambled as follows;

~~~sun Revision A, of 9 May 1988

~ ~ I /



Chapter 5 â€”Fonts and Special Characters 61

A complete list of these special names occurs in Appendix B, Font and Charac
ter Examples.

SIGMA( alpha times beta ) -> inf

which is less concise (31 keystrokes instead of 27!), but clearer to the uninitiated.

Notice that each four-charactername is a single character as far as tzo f f is con
cemed. For example, the translate request

.tr N(miN (em

is perfectly clear, meaning

tr â€”â€”

that is, to translate â€”(minus sign) into â€”(em-dash).

Some characters are automatically translated into others: grave ' and acute
accents (apostrophes) become open and close single quotes ' ', the combination
of "..." is generally preferable to the double quotes "...". Similarly a typed
minus sign becomes a hyphen -. To print an explicit â€”sign, use N-. To get a
backslash printed, use ~e.

5.5. Character Set The tro f f character set consists of the Graphics Systems Commercial II char
acter set plus a Special Mathematical Font character set â€”each having 102 char
acters. These character sets are shown in Appendix B, Font and Character
Examples. All ASCIIcharacters are included, with some on the Special Font.
With three exceptions, the ASCIIcharacters are input as themselves, and non
ASCIIcharacters are input in the form N(xx where xx is a two-character name
also explained in Appendix B. The three ASCIIexceptions are mapped as fol
lows:

g>~sun Revision A, of 9 May 1988

In eqn, explained in the chapter "Formatting Mathematics with eon" in Format
ting Documents, you can achieve the same effect with the input



62 Usingnrof f andtrof f

Exceptions to the Standard ASCIICharacter MappingTable 5-1

The characters ', ', and â€”may be input by N', 'tt', and Nâ€”respectively or by
their names found in Appendix B. The ASCIIcharacters 9, 4, ", ', ', <, >, N, (,
1,, ", and exist only on the Special Font and are printed ass one-em space if
that font is not mounted.

nro f f understandsthe entire tro f f characterset, but can in generalprint only
ASCIIcharacters, additional characters as may be available on the output device,
such characters as may be constructed by overstriking or other combination, and
those that can reasonably be mapped into other printable characters. The exact
behavior is determined by a driving table prepared for each device. The charac
ters ', ', and print as themselves.

5.6. Fonts

nr o f f understands font control and normally underlines italic characters.

5.7.. 1g â€”Control
Ligatures

A ligature is a special way of joining two characters together as one. Way back
in the days before Gutenberg, scribes would have a variety of special forms to
choose from to make lines come out all the same length on a manuscript. Some
of these forms are still with us today.

Five ligatures are available in the current t ro f f character set â€”fi, fl, ff, ffi, and
ffl. They may be input (even in nr of f) by N(f i, N(f 1, K(f f, N(Fi, and
N(Fl respectively.

The ligature mode is normally on in tro f f, and automatically invokes ligatures
during input.

®~><sunmicrosystems
Revision A, of 9 May 1988

The default mounted fonts are Times Roman (R), Times Italic (j:), Times Bold
(B), and the Special Mathematical Font (S) on physical typesetter positions 1, 2,
3, and 4 respectively. These fonts and others are used in this document. The
current font, initially Roman, may be changed (among the mounted fonts) by use
of the . f t request, or by embedding at any desired point either Nf x, Nf (xx, or
Nf N where x and xx are the name of a mounted font and N is a numerical font
position. It is not necessary to change to the Special font; characters on that font
are automatically handled. A request for a named but not-mounted font is
ignored. tr of f can be informedthat any particular font is mounted by use of
the . f p request. The list of known fonts is installation-dependent. In the subse
quent discussion of font-related requests, F represents either a one- or two
character font name or the numerical font position, 1 through 4. The current font
is available (as numerical position) in the read-only number register . f.



If you want other ligatures like the a:, o:, PE, andCEligatures, you have to make
them up yourself â€”tr of f doesn't know about them. See Chapter 12 the sec
tion on "Arbitrary Horizontal Motion'* (the Nh function) for some examples on
constructing these ligatures.

Summary of the . 1g Request

ligature

.1gN
Offinnrof f, onintrof f.
on

Turn Ligature mode on if N is absent or non-zero. Turn ligature mode off if
N=O. If N=2, only the two-character ligatures are automatically invoked.
Ligature mode is inhibited for request, macro, string, register, or file names,
and in copy mode. No effect in nr o f f .

Revision A, of 9 May 1988

Mnemonic:

Form of Request:
Initial Value:

If No Argument:

Explanation:

>~>~sunmicrosystsms

Chapter 5 â€”Fonts and Special Characters 63





Tabs, Leaders, and Fields

Tabs, Leaders, and Fields .... 67

6.1.. t a â€”Set Tabs .... 67

68

68

69

70

71

73

74

Setting Relative Tab Stops ...........................................

Right-Adjusted Tab Stops .............................................

Centered Tab Stops ...........................................................

. t c â€”Change Tab Replacement Character ....

Summary of Tabs ...............................................................

6.2. Leaders â€”Repeated Runs of Characters ...............

. 1c â€”Change the Leader Character ....................

6.3.. f c â€”Set Field Characters ..........................................





Tabs, Leaders, and Fields

There are several ways to get stuff lined up in columns, and to achieve other
effects such as horizontal motion and repeated strings of characters. The three
related topics we discuss in this section are tabs, leaders, andfields.

tabs behave just like the tab stops on a typewriter.

leaders are for generating repeated strings of characters.

fields are a general mechanism for helping to line stuff up into
columns.

This part of the document concentrates on the 'easy' parts, so to speak. Later
sections of this document contain discussions on the facilities for drawing lines
and for producing arbitrary motions on the page.

6.1.. ta â€”SetTabs

When we format the above example, we get this output:

f

word-five
t

word-fourword-one
I

word-two
1

word-three

®~>~sun
micros ystems

Revision A, of 9 May 198867

Tabs (the ASCIIhorizontal tab character) can be used to produce output in
columns, or to set the horizontal position of output. Typically tabs are used only
in unfilled text. Tab stops are set by default every half inch from the current
indent (in t r of f) and every 0.8 inch from the current indent (in nro f f ), but
can be changed by the . t a (tab) request. In the example below, we set tab stops
every one-and-a-half inches and set some text in columns based on those tab
stops. We place a line of exclamation marks (! ) above and below the text to
show where the tabs stops are in the output page:



68 Usingnroff andtroff

Setting Relative Tab Stops The tab stops set in the example above are in terms of absolute position on the
line. You could also set tabs relative to previous tabs stops by preceding the tab
stop number with a + sign, and get exactly the same result:

Right-Adjusted Tab Stops In the standard case as shown in the above examples, the tab stops are left
adjusted (as on a typewriter). You can also make the tab stops right-adjusting for
doing things like lining up columns of numbers. When you right-adjust a tab
stop, the action of placing a tab before the field places the material behind the tab
stop on the output line. Here's an example of some input with both alphabetic
and numeric items:

Notice the . t a request â€”it has the letter R on the end to indicate that this is a
right-adjusted tab. When we format that table, we get this result:

Notice how the numbers in the second column line up.

Centered Tab Stops Finally you can make a centered tab stop, so that things get centered between the
tabs. We can use the centering tabs to put a title on our table from above:

®~®~sun Revision A, of 9 May 1988

July
August
September
October
November
December

5
9

15
60
85

126



Chapter 6 â€”Tabs, Leaders, and Fields 69

and when we format this table now, we get this result:

Notice that the column headings are centered over the data in the table.

If you have a complextable, instead of using tr of f or nr of f directly,use the
tbl programdescribedin the chapter"FormattingTables with tb1" in Format
ting Documents. A good example of where tbl does more work for you is when
numerically-aligned items have decimal points in them â€”it is really hard to do
thisusingthe rawtro f f or nro f f capabilities.

. tc â€”Change Tab
Replacement Character

A tab inserts blank spaces between the item that came before and after it. You
can change this by filling up tabbed-over space with some other character. Set
the 'tab replacement character' with the . t c (tab character) request:

Ttus produces

Name Age

There is a more general mechanism for drawing lines, described in the sections
"Drawing Vertical Lines" and "Drawing Horizontal Lines" in the chapter "Arbi
trary Motions and Drawing Lines and Characters."

To reset the tab replacement character to a space, use the . t c request with no
argument. Lines can also be drawn with the in-line N1 command, described in
the chapter "Arbitrary Motions and Drawing Lines and Characters."

>~>~sun
micros ystems

Revision A, of 9 May 1988

Month
July
August
September
October
November
December

Shipments
5
9

15
60
85

126



70 Usingnrof f andtrof f

Summaryof the . tc Request

Mnemonic: tab character

.tc c

The tab repetition character becomes c, or is removed, specifying motion.

E (see Table A-2)

Summary of Tabs The table below is a summary of the types of tab stops. There are three types of
internal tab stops â€”left-adjusting, right-adjusting, and centering. In the follow
ing table:

next-string

is the width of next-string.

Table 6-1 Types of Tab Stops

Revision A, of 9 May 1988

Form of Request:
Initial Value:

lf No Argument:

Explanation:

Notes:

space

Removed

>~>~sunmicrosystems

is the distance from the current position on the input line
(where a tab was found) to the next tab stop.

consists of the input characters following the tab up to the next
tab or end of line.



Chapter 6 â€”Tabs, Leaders, and Fields 71

Summary of the . ta Request

Mnemonic: tab

Form of Request:
Initial Value:

If No Argument:

Explanation:

Notes:

6.2. Leaders â€”Repeated
Runs of Characters

Contents

Contents

®g>~sunmicrosystems
Revision A, of 9 May 1988

2.0 BluntUsesof Clubs .
2.1 Social Clubs .
2.2 Arthritic Clubs .
2.3 Golf Clubs
2.4 Two-by-Four Clubs

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

.ta Nt...
0.8 inchesin nr of f, 0.5 inchesin tr of f .

Ignored

Set tab stops and types â€”N is the tab stop value and t is the type. t ro f f
tab stops are preset every 0.5 inches; nr o f f tab stops are preset every 0.8
inches. t=R means right-adjusting tabs, t=C means centering tabs, and if t is
absent, the tabs are left-adjusting tab stops. Stop values in the list of tab
stops are separated by spaces, and a value preceded by + is treated as an
increment to the previous stop value.

E, m (see Table A-2)

Leaders are repeated runs of the same character between tab stops. Leaders are
most often used to hang two separated pieces of text together. A common appli
cation is in tables of contents. If you look at the contents for this manual you
will see that the chapter and section titles (on the left of the line) are separated
from the page number (on the right end of the line) by a row of dots. In fact here
is a short example to illustrate what the leaders look like:

13
16
18
25
29

The dots are called leaders, because they 'lead' your eye from one thing to the
other. It is not nearly so easy to read stuff like that if the leaders aren't there:

13
16
18
25
29

The leader character is normally a period, but it can in fact be any character you
like â€”some people prefer dots and some people prefer a solid line:



72 Usingnrof f andtrof f

Contents

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

13
16
18
25
29

A leader is very similar to a tab, but you get the repeated characters by typing an
in-line Na sequence instead of a tab or a Nt sequence. The Na sequence is a
control-A character or an ASCIISOH(start of heading) character and is hereafter
known as the leader character for the purposes of this discussion. When the
leader character is encountered in text it generates a string of repeated characters.
The length of the repeated string of characters is governed by internal tab stops
specified just as for ordinary tabs as discussed in the section on tabs above. The
major difference between tabs and leaders is that tabs generate motion and
leaders generate a string ofperiods. Let's look at a fragment of the text that gen
erated the examples above:

What we' re trying to get here are lines of text with the section numbers and the
titles, followed by a string of leader characters, followed by some space and then
the page number at the right-hand end of the line. Tables of contents tend to look
better with shorter line lengths, so we set our first tab to five inches minus five
en-spaces to leave a gap at the end of the leader. The second tab is set to a right
adjusting tab at five inches. Each line of the table now contains the text to appear
on the left end, followed by a couple of spaces, followed by the 4a sequence to
indicated the leader, followed by the ~t sequence to indicate the tab, and finally
followed by the page number. The result of formatting all that stuff is:

2.0 Blunt Uses of Clubs
2.1 Social Clubs .
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

13
16
18
25
29

~~><sun
micros ystems

Revision A, of 9 May 1988



Chapter 6 â€”Tabs, Leaders, and Fields 73

Just as you could use the . t c request to change the character that gets generated
with tabs, you can use the . 1c (leader character) request to specify the character
that is generated by a leader. The standard leader character is the period. We can
show this by taking our last fragment and placing a . 1c request before it to
change the leader character to an underline:

. 1c â€”Change the Leader
Character

Then when we format the thing, it looks like this:

Whereas the length of generated motion for a tab can be negative, the length of a
repeated character string cannot be. Repeated character strings contain an integer
number of characters, and any residual distance is added before the leaders as
space. Tabs or leaders found after the last tab stop are ignored, but may be used
as next-string terminators.

Tabs and leaders are not interpreted in copy mode. Nt and Na always generate a
non-interpreted tab and leader respectively, and are equivalent to actual tabs and
leaders in copy mode.

leader characterMnemonic:

Form of Request:
Initial Value:

.1c c

If No Argument:

Explanation: The leader repetition character becomes c, or is removed. Successive leader
requests (Nas) act like tabs.

Notes: E (see Table A-2)

®~>~sun Revision A, of 9 May 1988

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

Removed â€”successive tas act like tabs

13
16
18
25
29



74 Usingnrof f andtrof f

6.3.. f c â€”Set Field
Characters

A field lives between the current position on the input line and the next tab stop.
The start and end of the field are indicated by a field delimiter character. tr of f
or nrof f places the field on the line and pads out any excess space with spaces.
You indicate where the padding actually goes by placing padding indicator char
acters at various places in the field. You set the field delimiter character and the
padding indicator character with the . f c (field characters) request. In the
absenceof any other information,t r of f or nro f f has the fieldmechanism
tumed off entirely. The . f c request looks like:

.fc dp

where d is the field delimiter character andp is the padding indicator character.
If you do not specify any character for a padding indicator, the space character is
the default. However, this means that you could not have spaces within the field,
so you normally specify the padding indicator as something other than a space.

So let's start with a very simple example of a single field and see what we get.
Here is the input:

and here is the output after formatting:

1

string of characters
l

This is not very exciting â€”the characters in the field are simply left-adjusted in
the field, and the rest of the field up to the tab stop are padded with spaces. You
would get exactly the same result if you placed the padding indicator character at
the right end of the field to indicate that you wanted the padding on the right:

®~>~sunmicrosystems
Revision A, of 9 May 1988

A field is a more general mechanism for laying out material between tab stops.
Hardly anyone ever needs to use fields,but the tb1 preprocessor uses them for
placing tabular material on the page. This section is a very short discussion on
how to use fields. In general, when you want to lay out tabular material you
should use tbl to do the job for you. Fields are a way of reducing the number of
tab stops you have to set, and also have tr of f or nro f f do some automatic
work in parceling out padding space for you.



Chapter 6 â€”Tabs, Leaders, and Fields 75

As you can see, the result is identical to the one just above:

But now we can place a padding indicator character at the left end of the field
and get strings right-adjusted in the field:

We used two strings of different length here to show how they are right-adjusted
against the tab stop:

You can see how the spaces were placed on the left end of the field because that
is we where we placed the padding indicator character, and the strings got
adjusted right to the tab stop.

Then we can get fields centered by placing the padding indicator character at
both ends of the string:

Again we used two strings of different lengths to show the effect of centering the
field:

Revision A, of 9 May 1988>~®~sun

I

string of characters

string of characters
another string of characters



76 Usingnrof f andtrof f

string of characters
longer string of characters

In general, a field or a sub-field between a pair of padding indicator characters is
centered in its space on the line.

Things get even more useful when you have multiple sub-fields in a field â€”the
padding spaces are then parceled out so that the sub-fields are uniformly left
adjusted, right-adjusted, or centered between the current position and the next tab
stop:

and here is the output after we format that:

string of characters
string of characters
I

another string
1

And finally we can show three strings within a field, with the left part left
adjusted, the center part centered, and the right part right-adjusted:

and here is the output after we format that:

left string
longer left string
I

I

right string
longer right string

I

center string
longer center string

®~>~sunmicrosystems
Revision A, of 9 May 1988

So to summarize, a field is contained between a pair of field delimiter characters.
A field consists of sub-fields separated by padding indicator characters. The field
length is the distance on the input line from the position where the field begins to
the next tab stop. The difference between the total length of all the sub-fields and
the field length is incorporated as horizontal padding space that is divided among
the indicated padding places. The incorporated padding can be negative.



field character

.fcf p
Field mechanism is off

Field mechanism is turned off.

>~>~sun Revision A, of 9 May 1988

Mnemonic:

Form of Request:
Initial Value:

If No Argument:

Explanation:

Chapter 6 â€”Tabs, Leaders, and Fields 77

Set the field delimiter tof; set the padding indicator to p (if specified) or to
the space character if p is not specified. In the absence of arguments, the
field mechanism is tumed off.





Titles and Page Numbering .... 81

7.1. Titles in Page Headers .....................

7.2. Fonts and Point Sizes in Titles ....

81

83

7.3.. pc â€”Page Number Character ....

7.4.. t j. Request â€”Three Parameters .... 85

Titles and Page Numbering





Titles and Page Numbering

Suppose you want a title at the top of each page, saying just

left top center top right top

There was a very early text formatter called rojj",where you could say

.he 'left top'center top'right top'

.fo 'left bottom'center bottom'right bottom'

to get headers and footers automatically on every page. Alas, this doesn't work
in t ro f f, which is a serious hardship for the novice. Instead you have to do a
lot of specification:

c You have to say what the actual title is (reasonably easy â€”you just use the
. tl request to specify the title).

You have to specify when to print the title (also reasonably easy â€”you set a
trap to call a macro that actually does the work),

and finally you have to say what to do at and around the title line (this is the
hard part).

Taking these three things in reverse order, first we define a .NP macro (for new
page) to process titles and the like at the end of one page and the beginning of the
next:

To make sure we' re at the top of a page, we issue a 'begin page' request 'bp,
which skips to top-of-page (we' ll explain the ' shortly). Then we space down
half an inch (with the 'sp 0 . 5i request), and print the title (the use of . t 1

®~>~sunmicrosystems
Revision A, of 9 May 198881

7.1. Titles in Page Headers This is an area wherethingsget tougher,because tr o f f doesn't do any of this
automatically. Of necessity, some of this section is a cookbook, to be copied
literally until you get some experience.



82 Usingnrof f andtrof f

should be self explanatory â€”later we will discuss the title parameters), space
another 0.3 inches (with the 'sp 0 . 3i request), and we' re done.

To ask for . NP at the bottom of each page, we have to say something like 'when
the text is within an inch of the bottom of the page, start the processing for a new
page'. This is done with a 'when' request . wh:

.wh -li NP

See Chapter 10 for a more detailed description of the . wh request. No dot (. ) is
used before NP in the when request because in this case, we' re specifying the
name of a macro, not calling a macro. The minus sign means measure up from
the bottom of the page, so 'â€”1j.' means one inch from the bottom.

The . wh request appears in the input outside the definition of .NP; typically the
input would be

Now what happens? As text is actually being output, t ro f f keeps track of its
vertical position on the page. After a line is printed within one inch from the bot
tom, the . NP macro is activated. In the jargon, the . wh request sets a trap at the
specifiedplace, which is 'sprung' when that point is passed.. NP skips to the top
of the next page (that's what the 'bp was for), then prints the title with the
appropriate margins.

Why'bp and'sp insteadof .bp and . sp? The answeris that .bp and . sp,
like several other requests, break the current line â€”that is, all the input text col
lected but not yet printed is flushed out as soon as possible, and the next input
line is guaranteed to start anew line of output. If we had used .bp or . sp in the
. NP macro, a break would occur in the middle of the current output line when a
new page is started. The effect would be to print the left-over part of that line at
the top of the page, followed by the next input line on a new output line, some
thing like this:

page break

®g>~sunmicrosystems
Revision A, of 9 May 1988



Chapter 7 â€”Titles and Page Numbering 83

7.2. Fonts and Point Sizes
in Titles

Summary of the . 1t Request

length of title
.1t~
6.5 inches

Previous value

Notes:

®~>~sun Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

This is not what we want. Using ' instead of . for a request tells tro f f that no
break is to take place â€”the output line currently being filled should not be
forced out before the space or new page.

The list of requests that break lines is short and natural:

Table 7-1 Requests that Cause a Line Break

No other requests break lines, regardless of whether you use a . or a '. If you
really do need a break, add a .br (break) request at the appropriate place.

One other thing to beware of â€”if you' re changing fonts or point sizes a lot, you
may find that if you cross a page boundary in an unexpected font or size, your
titles come out in that size and font instead of what you intended. Furthermore,
the length of a title is independent of the current line length, so titles will come
out at the default length of 6.5 inches unless you change it, which is done with
the . 1t (length of title) request.

Set length of title to &. The line-length and the title-length are indepen
dent. Indents do not apply to titles; page-offsets do.

E, m (see Table A-2)

There are several ways to fix the problems of point sizes and fonts in tiQes. For



84 Usingnrof f andtrof f

the simplest applications, we can define the . NP macro to set the proper size and
font for the title, then restore the previous values, like this:

To get a footer at the bottom of a page, you can modify .NP so it does some pro
cessing before the 'bp request, or split the job so that there is a separate footer
macro invoked at the bottom margin and a header macro invoked at the top of the
page.

Output page numbers are computed automatically as each page is produced
(starting at 1), but no numbers are printed unless you ask for them explicitly. To
get page numbers printed, include the character -: in the . t j. line at the position
where you want the number to appear. For example

centers the page number inside hyphens.

You can change the page number character with the .pc request.7.3.. pc â€”Page Number
Character

Summary of the . pc Request

Mnemonic: page-number character

Form of Request:

Initial Value:

.pc c

If No Argument:

Explanation:

Off

Set the page-number character to c, or remove it if there is no c argument.
The page-number register remains %.

®g®<sunmicrosystems
Revision A, of 9 May 1988

This version of . NP does not work if the fields in the . t 1 request contain size or
font changes. What we would like to do in cases like this is remember the status
of certain aspects of the environment, change them to meet our needs for the time
being, and then restore them after we' re done with the special stuff. This require
ment is satisfiedby tro f f 's environment mechanism discussed in Chapter 17,
Environments.



g i ~ig

Chapter 7 â€”Titles and Page Numbering 85

7.4.. t1 Requestâ€”Three
Parameters

Smiles and SoapHunting the Snark â€”85â€”

by typing the a three-part title request that looks like:

title

. t 1 'left 'center 'right '

Nothing

NothingIf No Argument:

Explanation:

4g®~S 0 Ilmicrosystems
Revision A, of 9 May 1988

Mnemonic:

Form of Request:
Initial Value:

You can set the page number at any time with either . bp n, which immediately
starts a new page numbered n, or with .pn n, which sets the page number for the
next page but doesn't skip to the new page. Again, .bp +n sets the page number
to n more than its current value; .bp means .bp +1.

The . t 1 (title) request automatically places three text fields at the left, center,
and right of a line (with a title-length specifiable via the . 1t (length of title)
request. The most common use for three-part titles is to put running headers and
footers at the top and bottom of pages just like those in this manual. In fact, the
. t 1 request may be used anywhere, and is independent of the normal text col
lecting process. For example, we just placed a three-part title right here in the
text:

.tl 'Hunting the Snark'- -. -'Smiles and Soap'

and you might notice that the page number in the formatted example is the same
as the page number for this page.

The strings in the left, center, and right fields are respectively left-adjusted,
centered, and right-adjusted in the current title-length. Any of the strings
may be empty, and overlapping is permitted. If the page-number character
(initially %)is found within any of the fields it is replaced by the current
page number having the format assigned to register '-.. Any character may
be used as the string delimiter.





t ro f f Input and Output

t ro f f Input and Output ..... 89

8.1.. so â€”Read Text from a File .....

8.2.. nx â€”Read Next Source File ....

89

91

91

92

8.5.. ex â€”Exit fromnro f f or t ra f f .... 94

8.6.. tm â€”Send Messages to the Standard Error File .... 94

8.3. Pipe Output to a Specified Program (nro f f only) ....

8.4.. rd â€”Read from the Standard Input ...................,...........





t ro f f Input and Output

We now describe two t ro f f requests that we omitted earlier, because their use
fulness is more apparent when you understand the t r o f f command line. Nor
mally tro f f takes its input from the files given when it is called up. However
there are ways in which the formatter can be made to take part of its input from
elsewhere, using tr of f requests embedded in the document text.

8.1.. so â€”Read Text
from a File

The . so request, which tells tro f f to switch over and take its source from the
named file. For example, suppose you have a set of macros that you have
defined, and you have them in a file called macros. We can call them up from
the trof f commandline:

hostname%troff macros document
hostname-:

as we showed earlier, but it's a bit of a nuisance having to do this all the time.
Also, if only some of our documents use the macros, and others don' t, it can be
difficult to remember which is which. An alternative is to make the first line of
the document file look like this:

.so macros

Now we can format the document by:

hostname% troff document
hostname%

The first thing tro f f sees in the filedocument is the request . so macr os
which tells it to read input from the file called macros. When it finishes taking
input from macros, tro f f continues to read the original file document.

®~><sunmicrosystems
Revision A, of 9 May 198889

Another way of using the . so request lets you format a complete document, held
in several files,by only giving one filename to the tro f f command. Let us
create a file called document containing:



90 Usingnrof f andtrof f

We can now format it with the t r of f command line:

hostname% troff document I 1pr
hostname%

This is a lot easier than typing all the filenames each time you format the docu
ment, and a lot less prone to error.

This technique is especially useful if your filenames reflect the contents of the
various sections, rather than the order in which they appear. For instance, look at
this file which describes a whole book (something like the one you are reading):

It is obviously much easier to format the whole thing with a t r of f command
line like this:

hostname-: troff book I lpr
hostname%

than it would be if you had to supply all the filenames in the right order. Notice
that we used the comment feature of t r o f f to tie chapter titles to filenames.

®~>~sun Revision A, of 9 May 1988



Chapter 8 â€”tro f f Input and Output 91

Summary of the . so Request

Mnemonic: source

. so filename

8.2.. nx â€”Read Next
Source File

Mnemonic: next

. nx filename

end-of-file

.pi /usr/ucb/lpr

or

.pi /usr/bin/col

Summary of the . pi Request

p'peMnemonic:

Revision A, of 9 May 1988

Form of Request:

Explanation:

Form of Request:

If No Argument:

Explanation:

8.3. Pipe Output to a
SpecifiedProgram
(nroff only)

Form of Request:

Explanation:

Switch source file â€”the top input (file reading) level is switched to
filename. The sourced-in file is read directly and processed immediately
when the . so line is encountered. When the new file ends, input is again
taken from the original file.. sos may be nested.

Next file is filename. The current file is considered ended, and the input is
immediately switched to filename. There is no return to the file containing
the . nx command.

A couple of examples of programs you might want you pipe your nro f f output
to are 1pr and col. Your source line might look like this:

if you had formatted tables in your source file.

.pi program name

Pipe output to program (nro f f only). This request must occur before any
printing occurs. No arguments are transmitted to program.

®~®~sun
micros ystems



92 Usingnrof f andtrof f

8.4.. rd â€”Read from the
Standard Input

Another t ro f f request that switches input from the file you specify is the . rd
(read) request. The standard input can be the user's keyboard, a pipe, or a file.
The . r d request reads an insertion from the standard input. When tro f f
encounters the . r d request, it prompts for input by sounding the terminal bell or
flashing the screen. A visible prompt can be given by adding an argument to
. rd, as we show in the example below.

Everything typed up to a blank line (two newline characters in a row) is inserted
into the text being formatted at that point. This can be used to 'personalize' form
letters. If you have an input file with this text:

then when you format it, you will be prompted for input:

After typing the name Peter you have to press the RETURNkey twice, since
tr o f f needs a blank line to end input. The result of formatting that file is:

To get anothercopy of this for Bill, youjust run the trof f command again:

and again for Joe, and for Manuel, and Louis, and Alphonse, and ..

®~><sun Revision A, of 9 May 1988



Chapter 8 â€”tro f f Input and Output 93

Summary of the . rd Request

readMnemonic:

Form of Request:

Initial Value:

. zd prompt

Not applicable

If No Argument:

Explanation:

prompt =BEL

Read insertion from the standard input until two newlines in a row are
found. If the standard input is the user's keyboard, prompt (or a BEL)is
written onto the user's terminal.. zd behaves like a macro, and arguments
may be placed after prompt. Use the standard way to access arguments in
macros (see Chapter 10.

If insertions are to be taken from the terminal keyboard while output is being
printed on the terminal, the command line option â€”g will turn off the echoing of
keyboard input and prompt only with BEL. The regular input and insertion input
cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the
insertions for all the copies in one file to be used as the standard input, and caus
ing the file containing the letter to reinvoke itself using . nx (see the previous
section); the process would ultimately be ended by a . ex in the insertion file.
Example:

To put everything together, you could use:

hostname%cat Names l troff Letter

sun Revision A, of 9 May 1988
microsystems

Since tzo f f takes input from the terminal up to a blank line, you are not limited
to a single word, or even a single line of input. You can use this method to insert
addresses or anything else into form letters.



94 Usingnzof f andtrof f

8.5.. ex â€”Exit from
nroffortroff

Summary of the . ex Request

exitMnemonic:

8.6.. tm â€”Send Messages
to the Standard Error
File

.tm tell me some good news

tell me some good news

Summary of the . tm Request

terminal messageMnemonic:

Display a newline

®g>~sunmicrosystems
Revision A, of 9 May 1988

Form of Request:

Explanation:

Form of Request:

Initial Value:

If No Argument:

Explanation:

. ex prompt

Exit from nro f f or tro f f. Text processingis terminatedexactlyas if all
input had ended.

The . tm (terminal message) request displays a message on the standard error
file. The request looks like:

and when tro f f or nro f f encounters this in the input file, it displays the string

on the standard error file. This request has been used in older versions of the
â€”ms macro package to rebuke the user when (for instance) an abstract for a paper
was longer than a page. Other macro packages use the . tm request for assisting
in generating tables of contents and indices and such supplementary material.

. tm string

Not applicable

After skipping initial blanks, string (rest of the line) is read in copy mode
and written on the user's terminal.



Strings

Strings 97

99

101

9.1.. ds â€”Define Strings ................................................

9.2.. as â€”Append to a String ......................................

9.3. Removing or Renaming String Definitions ...





Strings

Obviously if a paper contains a large number of occurrences of an acute accent
over a letter 'e', typing No" eN ' " for each 5 would be a great nuisance. (See
Chapter 12 for more detailed information on drawing lines and characters.

Fortunately, tro f f provides a way that you can 'storean arbitrary collection of
text in a string, and thereafter use the string name as a shorthand for its contents.
Strings are one of several t r o f f mechanisms whose judicious use lets you type
a document with less effort and organize it so that extensive format changes can
be made with few editing changes. A reference to a string is replaced in the text
by the string definition.

You create a string (and give it an initial value) with the . ds (define string)
request. You can later add more characters to the end of the string by using the
. as (append to string) request.

String names may be either one or two characters long. You get the value of a
string placed in the text, where it is said to be interpolated, by using the notation:

for a one-character string named x, and the more complicated notation:

N+ (xx

for a two-character string named xx.

String references and macro invocations may be nested.

®g>~sun Revision A, of 9 May 198897

A string is a named sequence of characters, not including a newline character,
that may be interpolated by name at any point in your text. Note that names of
tr of f requests, names of macros, and names of strings all share the same name
list. String names may be one or two characters long and may usurp previously
defined request, macro, or string names.



98 Usingnrof f andtrof f

.ds e No"eN'"

defines the string e to have the value No" e~ ' "

You refer to them with the sequence N*x for one-character names or ~* ( xy for
two-character names. Thus, to get tdlbphone, given the definition of the string e
as above, we can say 5*eh,*ephone.

As another live example, in the section on ligatures in Chapter 5, Fonts and Spe
cial Characters, we noted that tr of f doesn't know about the Scandinavian
ligatures â€”you have to decide for yourself how to define them. Here are our
definitions of the strings for those ligatures:

See the section entitled "Nh Function â€”Arbitrary Horizontal Motion" in
Chapter 12 for a discussion on what the Nh constructs ate doing in the string
definitions above. Having defined the strings, all you have to do is type the
string references like this:

the Scandinavian ligatures N*(oe, N*(ae, N*(Oe, and K*(Ae

in order to get... the Scandinavianligatures0:, a, CE,and &... into your
stream of text.

If a string must begin with spaces, define it as

.ds xx text

The double quote character signals the beginning of the definition. There is no
trailing quote â€”the end of the line terminates the string.

A string may actually be several lines long; if t ro f f encounters a Nat the end
of any line, the backslash and the newline characters are disregarded resulting in
the next line being added to the current one. So you can make a long string sim
ply by ending each line except the last with a backslash:

Strings may be defined in terms of other strings, or even in terms of themselves.

®~>~sun Revision A, of 9 May 1988

9.1.. ds â€”Define Strings You create a string (and defineits initial value) with the . ds (definestring)
request The line



I / I ~ I /

Chapter 9 â€”Strings 99

define string

If No Argument:

Explanation:

9.2.. as â€”Append to a
String

. a s xx string-of-characters

. H level-number "Text of the Title"

®~>~sun Revision A of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:
. ds xx string

Not applicable

Ignored

Define a string xx containing string. Any initial double-quote in string is
stripped off to permit initial spaces.

The . as (append to string) request adds characters to the end of a string. You
use the . as request like this:

where string-of-characters is appended to the end of whatever is already in the
string xx.

Note that the string mentioned in a . as request is created if it didn't already
exist, so in that respect an initial . as request acts just like a . ds request.

For example, here's a short fragment from the . Hmacro that was used to gen
erate the section numbers in this document. The . Hmacro is called up like

where level-number is 1, 2, 3, ... to indicate that this is a first, second,
third,... level heading. The . Hmacro keeps track of the various section
numbers via a bunch of number registers Hl through H5, and they are tested for
and appended to the SNstring if appropriate. For example:



100 Usingnroff andtroff

Let's unscramble that mess. The essential parts are the initial line that says:

set the initial section number string.ds SN Nhn(H1.

which sets the SN (section number) string to the value of the Hl number register
that counts chapter level numbers. Then the following four lines essentially all
perform a test that says:

. i f the level-number is greater than N, append the next higher sec
tion counter to the string. That is, if the current section number is
greater than 2, we append the value of the level 3 counter, then if the
section number is greater than 3, we append the value of the level 4
counter, and so on.

Finally, the built-up SN string, followed by the text of the title, gets placed into
the output text with the lines that read:

hh*(SNIT Nh Itic
N&NN$2

Now output the text

And in fact we can use the mechanisms that exist to play games like that because
we are using a macro package to format this document, and those number regis
ters are available to us. So we can define a string like this:

.ds XX ~n (H1.

and interpolate that string like this:

~* (XX

to get the value

®~®~sunmicroSyStems
Revision A, of 9 May 1988



Chapter 9 â€”Strings 101

. as XX ~n (H2. 4n (H3. 4n (H4 ~Nn (H5.

and then when we interpolate that string we get this:

9.2.0.0.0.

which, if you look, should be the section number of the stuff you are now read
ing.

Summary of the . as Request

append to stringMnemonic:

Form of Request:
Initial Value:

. as xx string

Not applicable

Ignored

Append string to string xx (append version of . ds). The string xx is created
if it didn't already exist.

If No Argument:

Explanation:

9.3. Removing or
Renaming String
Definitions

Strings (just like macros) can be renamed with the . rn (rename) request, or can
be removed from the namelist with the . rm (remove) request. Refer to Chapter
10 for more detailed descriptions of the . rn and . rm commands.

®~>+sun Revision A, of 9 May 1988

printed in the text. Now we can append the rest of the section counters to that XX
string like this (without caring whether they have any values):





Macros, Diversions, and Traps

Macros, Diversions, and Traps .... 105

10.1. Macros .... 105

. de â€”Define a Macro .... 105

. rm â€”Remove Requests, Macros, or Strings ...

. zn â€”Rename Requests, Macros or Strings .....

107

108

Macros With Arguments 108

. am â€”Append to a Macro 112

Copy Mode Input Interpretation .... 112

10.2. Using Diversions to Store Text for Later Processing .. 112

. di â€”Divert Text 113

. da â€”Append to a Diversion .... 114

114

. wh â€”Set Page or Position Traps .... 115

. ch â€”Change Position of a Page Trap .... 116

. dt â€”Set a Diversion Trap .... 116

. it â€”Set an Input-Line Count Trap ... 116

. em â€”Set the End of Processing Trap .... 117

10.3. Using Traps to Process Text at Specific Places on a Page ....





Macros, Diversions, and Traps

10.1. Macros

A macro is a named set of arbitrary lines that may be invoked by name or with a
trap. Macros are created by . de and . di requests, and appended to by . am and
. da requests; . di and . da requests cause normal output to be stored in a
macro. A macro is invoked in the same way as a request; a control line beginning
.xx interpolates the contents of macro xx. The remainder of the line may contain
up to nine arguments. Request, macro, and string names share the same name
list. Macro names may be one or two characters long and may usurp previously
defined request, macro, or string names. String references and macro invocations
may be nested. Any of these entities may be renamed with a . r n request or
removed with a . rm request.

. de â€”Define a Macro Suppose we want every paragraph to start in exactly the same way â€”with a
space and a temporary indent of two ems. We show a (very simplified) version
of the . PP (paragraph) macro from the â€”ms macro package:

.sP

.ti +2m

Then to save typing, we would like to collapse these into one shorthand line, a
trof f 'request'like

.PP

that wouldbe treated by tra f f exactly as if you had typed:

.sP

.ti +2m

. PP is called a macro. The way we tell t r o f f what . PP means is to define it

®~®~sunmicrosystems
105 Revision A, of 9 May 1988

Beforewe can go much further in nro f f or tr of f, we need to learn something
about the macro facility. In its simplest form, a macro is just shorthand notation
similar to a string. A macro is a collection of several separate t zo f f commands
which, when bundled together, achieves (sometimes complex) formatting when
the macro is invoked. Whereas a string is somewhat limited because its
definition is specific, a macro can interpret arguments that can change its
behavior from one invocation to the next.



106 Usingnrof f andtrof f

with the . de (define) request:

The first line names the macro (we used . PP) which is a standard macro notation
for 'paragraph'. It is common practice to use upper-case names for macros so
that their names don't conflictwith ordinary tro f f requests. The last line .
marks the end of the definition. In between the beginning and end of the
definition, is the text (often called the replacement text), which is simply
inserted whenevertr of f sees the request or macro call

.PP

The definition of . PP has to precede its first use; undefined macros are simply
ignored. Names are restricted to one or two characters.

Using macros for commonly-occurring sequences of requests is critically impor
tant. Not only does it save typing, but it makes later changes much easier. Sup
pose we decide that the paragraph indent should be greater, the vertical space
should be less, and the font should be Roman. Instead of changing the whole
document, we need only change the definition of the . PP macro to something
like

and the change takes effect everywhere we used . PP.

The notation N" is an in-line tro f f function that means that the rest of the line
is to be ignored. We use it here to add comments to the macro definition (a wise
idea once definitions get complicated).

®g+~S ll Il Revision A, of 9 May 1988



Chapter 10 â€”Macros, Diversions, and Traps 107

Summary of the . de Request

defineMnemonic:

Form of Request:

Initial Value:

. d6 xxyy

Not applicable

If No Argument:

Explanation:

. rm â€”Remove Requests,
Macros, or Strings

Mnemonic:

Form of Request:

Initial Value:

remove

. rmxx

Not applicable

If No Argument:

Explanation:

Ignored

Remove request, macro, or string. The name xx is removed from the name
list and any related storage space is freed. Subsequent references will have
no effect.

®~>~sun Revision A, of 9 May 1988

yy= ~

Define or redefine the macro xx. The contents of the macro begin on the
next input line. Input lines are copied in copy mode until the definition is
terminated by a line beginning with .yy, whereupon the macro yy is called.
In the absence of yy, the definition is terminated by a line beginning with

. '. A macro may contain . de requests provided the terminating macros
differ or the contained definitionterminator is concealed. ' .. ' can be con
cealed as NN.. which will copy as N.. and be reread as ' .



108 Usingnrof f andtrof f

. rn â€”Rename Requests,
Macros or Strings

Mnemonic: rename

Form of Request;

Initial Value:
. rn xxyy

Not applicable

Ignored

Rename request, macro, or string xx to yy. If yy exists, it is removed first.

If No Argument:

Explanation:

Refer to Chapter 9, Strings for information on defining strings.

As another example of macros, consider these two, which start and end a block of
offset, unfilled text, like most of the examples in this paper:

Now we can surround text like

Copy to:
John Doe
Richard Roberts
Stanley Smith

by the requests . BS and . BE, and it will come out as it did above. Notice that
we indented by an incremental amount: . in +0 . 3i instead of . in 0 . 3i.
This way we can nest ouruses of . BS and . BE to get blocks within blocks.

If later on we decide that the indent should be half an inch, then it is only neces
sary to change the definitions of . BS and . BE, not the whole paper.

Macros With Arguments The next step is to define macros that can change from one use to the next
according to parameters supplied as arguments to the macro. To make this work,
we need two things: first, when we define the macro, we have to indicate that
some parts of it will be provided as arguments when the macro is called. Then
when the macro is called we have to provide actual arguments to be plugged into
the definition.

®g>~sun Revision A, of 9 May 1988



Chapter 10 â€”Macros, Diversions, and Traps 109

When a macro is invoked by name, the remainder of the line can contain up to
nine arguments. The argument separator is the space character, and arguments
may be surrounded by double-quotes to permit embedded space characters. Pairs
of double-quotes may be embedded in double-quoted arguments to represent a
single double-quote. If the desired arguments won't fit on a line, a concealed
newline (N)may be used to continue the arguments on the next line.

When a macro is invoked the input leve1is pushed down and any arguments
available at the previous level become unavailable until the macro is completely
read and the previous level is restored. A macro's own arguments can be inter
polated at any point within the macro with 4$N, which interpolates the ¹h argu
ment (1<~<9). If an invoked argument doesn't exist, a null string results. For
example, the macro xx may be defined by

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the NS was concealed in the definition with a preceding backslash (~).
The number of currently available arguments is in the . 9 register.

No arguments are available at the top (non-macro) level in this implementation.
Because string referencing is implemented as an input-level push-down, no argu
ments are available from within a string. No arguments are available within a
trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for
reference. The mechanism does not allow an argument to contain a direct refer
ence to a long string (interpolated at copy time) and it is advisable to conceal
string references (with an extra N)to delay interpolation until argument reference
time.

Let's illustrate by defining a macro . SMthat will print its argument two point
sizes smaller than the surrounding text. That is, the macro call

.SM UNIX

will produce UNIX.

The definition of . SMis

+g+~S ll 11mhrosystems
Revision A, of 9 May 1988



110 Usingnro f f andt ra f f

Within a macro definition, the symbol NN9n refers to the nth argument that the
macro was called with. Thus NNSj. is the string to be placed in a smaller point
size when . SMis called.

As a slightly more complicated version, the following definition of . SMpermits
optional second and third arguments that will be printed in the normal size:

Arguments not provided when the macro is called are treated as empty, so

.SM UNIX ),

produces

UNIX),

while

.SM UNIX ) . (

produces

(UNIX).

It is convenient to reverse the order of arguments because trailing punctuation is
much more common than leading.

The following macro . BDis the one used to make the 'bold Roman' we have
been using for tro f f request names in text. It combines horizontal motions,
width computations, and argument rearrangement.

The Nh and ~w commands need no extra backslash, as we discuss in the section
Copy Mode Input Interpretation. The Na is there in case the argument begins
with a period.

Two backslashes are needed with the ~N$n commands, though, to protect one of
them when the macro is being defined. Perhaps a second example will make this
clearer. Consider a macro called . SH which produces section headings like the
ones in this manual, with the sections numbered automatically, and the title in

>~>~sunmicrosystems
Revision A, of 9 May 1988



Chapter 10 â€”Macros, Diversions, and Traps 111

bold in a smaller size. The use is

.SH "Section title

If the argument to a macro is to contain spaces, then it must be surrounded by
double quotes, unlike a string, where only the leading quote is permitted.

Here is the definition of the . SHmacro:

The section number is kept in number register SH, which is incremented each
time just before it is used. A number register may have the same name as a
macro without conflict but a string may not.

Weused Nhn(SHinsteadof Nn(SH and NNn(PS insteadof Nn(PS. Ifwehad
used 4n (SH, we would get the value of the register at the time the macro was
defined, not at the time it was called. If that's what you want, fine, but that isn' t
the case here. Similarly, by using NNn (P S, we get the point size at the time the
macro is called.

As an example that does not involve numbers, recall our . NP macro which had:

.tl 'left'center'right'

We could make these into parameters by using instead

.tl ' N4*(LT' 44*(CTr N4*(RT

ds CT

to give just the page number between hyphens, but a user could supply private
definitions for any of the strings.

>~®sunmicrosystems
Revision A, of 9 May 1988

so the title comes from three strings called LT, CT and RT for left title, center
title, and right title, respectively. If these are empty, then the title will be a blank
line. Normally CT would be set with something like



112 Usingnrof f andtrof f

. am â€”Append to a Macro

Summary of the . amRequest

append to macroMnemonic:

Form of Request;

Initial Value:

. amxxyy

Not applicable

If No Argument:

Explanation: Append to macro xx (append version of . de).

Copy Mode Input
Interpretation

During definition and extension of strings and macros (not by diversion) the
input is read in copy mode. The input is copied without interpretation except
that:

The contents of number registers indicated by Nn are interpolated.

o Strings indicated by N+ are interpolated.

0 Arguments indicated by N9 are interpolated.

o Concealed newlines preceded by backslash (N newline) are eliminated.

o Comments indicated by ~" are eliminated.

a Kt and Na are interpreted as ASCIIhorizontal tab and SOH respectively (see
Chapter 6, Tabs, Leaders, and Fields for more information).

NN is interpreted as N

~ . is interpreted as " . "

These interpretations can be suppressed by adding another N(backslash) to the
beginning of the command. For example, since N4 maps into a N, NNn will copy
as Nn which will be interpreted as a number register indicator when the macro or
string is reread.

10.2. Using Diversions to
Store Text for Later
Processing

tro f f provides a mechanism called a diversion for doing this processing. A
diversion is very similar to a macro and in fact uses the same mechanisms as the
macro facility. Any part of the output may be sent into a diversion instead of
being printed, and then at some convenient time the diversion may be brought
back into the input.

®~>~sun Revision A, of 9 May 1988

There are numerous occasions in page layout when it is necessary to store some
text for a period of time without actually printing it. Footnotes are the most
obvious example: the text of the footnote usually appears in the input well
before the place on the page where it is to be printed is reached. In fact, the place
where it is output normally depends on how big it is, which implies that there
must be a way to process the footnote at least enough to decide its size without
printing it.



Chapter 10 â€”Macros, Diversions, and Traps 113

. di â€”Divert Text The request . di xy begins a diversion â€”all subsequent output is collected into
the diversion called xy until a . di request with no argument is encountered,
which terminates the diversion. The processed text is available at any time
thereafter, simply by giving the request:

.xy

The vertical size of the last finished diversion is contained in the built-in number
register dn.

As a simple example, suppose we want to implement a 'keep-release' operation,
so that text between the requests . KS and . KE will not be split across a page
boundary (as for a figure or table). Clearly, when a . KS is encountered, we have
to begin diverting the output so we can find out how big it is. Then when a . KE
is seen, we decide whether the diverted text will fit on the current page, and print
it either there if it fits, or at the top of the next page if it doesn' t. So:

Recall that number register nl is the current position on the output page. Since
output was being diverted, this remains at its value when the diversion started.
dn is the amount of text in the diversion; . t (another built-in register) is the dis
tance to the next trap, which we assume is at the bottom margin of the page. If
the diversion is large enough to go past the trap, the . i.f is satisfied, and a .bp
is issued. In either case, the diverted output is then brought back with It. xx.
t r of f will do no furtherprocessingon it.

This is not the most general keep-release, nor is it robust in the face of all con
ceivable inputs, but it would require more space than we have here to write it in
full generality. This section is not intended to teach everything about diversions,
but to sketch out enough that you can read existing macro packages with some
comprehension.

®~>~sun Revision A, of 9 May 1988

Processed output may be diverted into a macro for purposes such as footnote pro
cessing or determining the horizontal and vertical size of some text for condi
tional changing of pages or columns. A single diversion trap may be set at a
specified vertical position. The number registers dn and dl respectively contain
the vertical and horizontal size of the most recently ended diversion.



114 Usingnrof f andtrof f

divertMnemonic:

Form of Request:

Initial Value:

.dj xx

Not applicable
End of diversionIf No Argument:

Explanation:

Notes:

. da â€”Append to a Diversion

Summary of the . da Request

append to diversionMnemonic:

Form of Request:

Initial Value:

.dsxx

- Not applicable

End of diversionIf No Argument;

Explanation:

~@>~sun Revision A, of 9 May 1988

10.3. Using Traps to
Process Text at
Specific Places on a
Page

Processed text that is diverted into a macro retains the vertical size of each of its
lines when reread in nofill mode regardless of the current V. Constant-spaced
(. c s) or emboldened (. bd) text that is diverted can be reread correctly only if
these modes are again or still in effect at reread time. One way to do this is to
embed in the diversion the appropriate . cs or . bd requests with the 'tran
sparent' mechanism described in the chapter Introduction to nroff and troff.

Diversions may be nested and certain parameters and registers are associated
with the current diversion level (the top non-diversion level may be thought of as
the 0th diversion level). These are the diversion trap and associated macro, no
space mode, &e internally-saved marked place (see .mk and . zt), the current
vertical place (. d register), the current high-water text baseline (. h register), and
the current diversion name (. z register).

Divert output to macro xx. Normal text processing occurs during diversion
except that page offsetting is not done. The diversion ends when the request
. di. or . da is encountered without an argument; extraneous requests of this
type should not appear when nested diversions are being used.

D (see Table A-2)

Append to diversion xx. This is the diversion equivalent of the . am (append
to macro) request.

Three types of trap mechanisms are available, namely page traps, diversion
traps, and input-line-count traps.

Macro-invocation traps may be planted using the . wh (when) request at any page
position including the top. This trap position may be changed using the . ch
(change) request. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an



Chapter 10 â€”Macros, Diversions, and Traps 115

increase in page length.

Two traps may be planted at the same position only by first planting them at dif
ferent positions and then moving one of the traps; the first planted trap will con
ceal the second unless and until the first one is moved. If the first one is moved
back, it again conceals the second trap.

The distance to the next trap position is available in the . t register; if there are
no traps between the current position and the bottom of the page, the distance
returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using
the . dt (diversion trap) request. The . t register works in a diversion; if there is
no subsequent trap a large distance is returne. For a description of input-line
count traps, see the . it request below.

. wh â€”Set Page or Position
Traps

whenMnemonic:

Form of Request:

Initial Value:

.wh Nxx

Not applicable

Not applicable

Install a trap to invoke xx at page position N; a negative N is interpreted
with respect to the page bottom. Any macro previously planted at N is
replaced by xx. A zero N refers to the top of a page. In the absence of xx,
the first-found trap at N, if any, is removed.

v (see Table A-2)

If No Argument:

Explanation:

Notes:

>~>~sun Revision A, of 9 May 1988

The macro associated with a page trap is automatically invoked when a line of
text is output whose vertical size reaches or 'sweeps past' the trap position.
Reaching the bottom of a page springs the top-of-page trap, if any, provided there
is a next page.



116 Usingnrof f andtrof f

. ch â€”Change Position of a
Page Trap

Summary of the . ch Request

Mnemonic: change trap
.chxxNForm of Request:

Initial Value: Not applicable

Not applicable

Change the trap position for macro xx to be N. In the absence of N, the trap,
if any, is removed.

v (see Table A-2)

If No Argument:

Explanation:

Notes:

. dt â€”Set a Diversion Trap

Summary of the . dt Request

diversion trapMnemonic:

Form of Request:
Initial Value:

.dt Nxx

Not applicable

Tum off diversion trapIf No Argument:

Explanation: Install a diversion trap at position N in the current diversion to invoke macro
xx. Another . dt will redefine the diversion trap. If no arguments are
given, the diversion trap is removed.

D, v (see Table A-2)Notes:

. it â€”Set an Input-Line
Count Trap

Summaryof the . it Request

Mnemonic: input-line-count trap

Form of Request:
Initial Value:

. it Nxx

Not applicable

If No Argument:

Explanation:

Notes:

®~>~sun Revision A, of 9 May 1988

Tum off trap

Set an input-line-count trap to invoke the macro xx after N lines of text input
have been read (control or request lines don't count). The text may be in
line text or text interpolated by in-line or trap-invoked macros.

E (see Table A-2)



Chapter 10 â€”Macros, Diversions, and Traps 117

. em â€”Set the End of
Processing Trap

Summary of the . emRequest

end macro

. emxx

Mnemonic:

Form of Request:
Initial Value:

If No Argument:

Explanation:

®~®<sun
fTIICfOSrSt8AlS

Revision A, of 9 May 1988

Not applicable

No trap installed

Call the macro xx when all input has ended. The effect is the same as if the
contents of xx had been at the end of the last file processed.





Number Registers

Number Registers .... 121

11.1.. nz â€”Set Number Registers ..........................................

11.2. Auto-Increment Number Registers ................................

11.3. Arithmetic Expressions with Number Registers ....

11.4.. a f â€”Specify Format of Number Registers .........

11.5.. zz â€”Remove Number Registers ..............................

121

123

124

125

127

:h'N".":'v%MMh@'AC L?????%4A&hW5444?????????$: h????."PA"'??"%AN'Q% ' NNvgNNN cc"%~xNh???%%?Acv'vg?? h??????N?h??????'"l'?kh?~8





Number Registers

Number registers, just like strings, have one- or two-character names. They are
set by the . nr (number register) request, and are referenced anywhere by Nn x
(one-character name) or ~n ( xy (two-character name). When you access a
number register so that its value appears in the printed text, the jargon says that
you have interpolated the value of the number register.

A variety of parameters are available to the user as predefined, named number
registers (see Appendix D). In addition, users may define their own named regis
ters. Register names are one or two characters long and do not conflict with
request, macro, or string names. Except for certain predefined read-only regis
ters, a number register can be read, written, automatically incremented or decre
mented, and interpolated into the input in a variety of formats. One common use
of user-defined registers is to automatically number sections, paragraphs, lines,
etc. A number register may be used any time numerical input is expected or
desired and may be used in numerical expressions.

tr of f defines several pre-defined number registers listed in Appendix D.
Among them are t for the current page number, nl for the current vertical posi
tion on the page, dy, mo, and yr for the current day, month and year (see Table
D-1) for a complete list); and . s and . f for the current size and font â€”the font
is a number fmm 1 to 4. Any of these number registers can be used in computa
tions like any other register, but some, like . s and . f, cannot be changed with a
. nr request because they are "read only" (see Table D-2) for a complete list).

11.1.. nr â€”Set Number
Registers

You create and modify number registers using the . nr (number register) request.
In its simplest form, the . nr request places a value into a number register â€”the
register is created if it doesn't already exist. The . nr request specifies the name
of the number register, and also specifies the initial value to be placed in there.
So the request

>~>sun Revision A, of 9 May 1988121

In a programmabletext formatter such as tro f f, you need a facility for storing
numbers somewhere, retrieving the numbers, and for doing arithmetic on those
numbers. tr of f meets this need by providing things called number registers.
Number registers give you the ability to define variables where you can place
numbers, retrieve the values of the variables, and do arithmetic on those values.
Number registers, like strings and macros, can be useful in setting up a document
so it is easy to change later. And of course number registers serve for any sort of
arithmetic computation.



122 Usingnrof f andtrof f

.nr PD 1.5v

would be a request to set a register called PD (which we might know as 'Para
graph Depth' if we were writing a macro package) to the value 1.5v (1.5 of
tro f f 's verticalunits).

As an example of the use of number registers, in the â€”ms macro package, most
significant parameters are defined in terms of the values of a handful of number
registers (see the chapter "Formatting Documents with the â€”ms Macros" in For
matting Documents). These include the point size for text, the vertical spacing,
and the line and title lengths. To set the point size and vertical spacing for the
following paragraphs, for example, a user may say:

.nr PS 10

.nr VS 12

The paragraph macro . PP is defined (roughly) as follows:

This sets the font to Roman and the point size and line spacing to whatever
values attestored in the PS and VS number registers.

Protecting by an extra layer of backslashes is only needed for ~n, ~*, N9, and N
itself. Things like Ns, Nf, Nh, Nv, and so on do not need an extra backslash,
since they are converted by tr of f to an internal code immediately upon being
seen.

>g®~sunmicrosystems
Revision A, of 9 May 1988

Why are there two backslashes? When t ro f f originally reads the macro
definition, it peels off one backslash to see what's coming next. To ensure that
another is left in the definition when the macro is used, we have to put two
backslashes in the definition. If only one backslash is used, point size and verti
cal spacing will be frozen at the time the macro is defined, not when the macro is
used.



Chapter 11 â€”Number Registers 123

Summary of the . nr Request

number register
.nrR~M

Mnemonic:

Form of Request:
Initial Value: Not applicable

Ignored

Assign the value ~ to number register R, with respect to the previous
value, if any. Set the increment for auto-incrementing to M.

u (see Table A-2)

If No Argument:

Explanation:

Notes:

11.2. Auto-Increment
Number Registers

When you set a number register with the . n r request, you can also specify an
additional number as an auto-increment value â€”that is, the number is added to
the number register every time you access the number register. You specify the
auto-increment value with a request such as:

.nr sn 0 j.

to specify a (hypothetical) section number register that starts off with the value 0
and is incremented by 1 every time you use it. This might be applicable (for
instance) to numbering the sections of a document automatically â€”something
you might expect a computer to do for you. You might also define a numbered
list macro that would clock up the item number every time you added a new list
item.

Here's a very quick and dirty example of the use of auto-incrementing a number
register:

When we format the above sequence, we get the following:

... the oddnumbers1,3, 5, 7,9, 11,...

The table below shows the effects of accessing the number registers x and xx
after a . nz request that sets them to the value N with an auto-increment value of
M.

®g>~sunmicrosystems
Revision A, of 9 May 1988



124 Usingnrof f andtrof f

Table 11-1 Access Sequencesfor Auto-incrementing Number Registers

. nr PS tt'ttn (PS â€”2

Table 11-2 Arithmetic Operators and LogicaI Operators for Expressions

Revision A, of 9 May 1988

11.3. Arithmetic
Expressions with
Number Registers

Arithmetic expressions can appear anywhere that a number is expected. As a
trivial example,

decrements the value in the PS macro by 2.

Expressions can use the arithmetic operators and logical operators as shown in
the table below. Parts of an expression can be surrounded by parentheses.

Except where controlled by parentheses, evaluation of expressions is left-to-right
â€”there is no operator precedence.

>~>~sun
micros ystems



Chapter 11 â€”Number Registers 125

7*-4+3/13

.11 7/2i

.11 7i/2

.11 71/2u

.nr 11 7i/2

. 11 t'tn (llu

+g+~+sunmicrosystems
Revision A, of 9 May 1988

11.4.. a f â€”Specify
Format of Number
Registers

Although the arithmetic we have done so far has been straightforward, more
complicated things are somewhat tricky. First, number registers hold only
integers. t ra f f arithmetic uses truncating integer division. Second, in the
absence of parentheses, evaluation is done from left to right without any operator
precedence (including relational operators). Thus

becomes 'â€”1'. Number registers can occur anywhere in an expression, and so
can scale indicators like p, i, m,and so on (but no spaces). Although integer
division causes truncation, each number and its scale indicator is converted to
machine units (1/432 inch) before any arithmetic is done, so li/2u evaluates to
0.5i correctly.

The scale indicator u often has to appear where you would not expect it â€”in
particular, when arithmetic is being done in a context that implies horizontal or
vertical dimensions. For example,

would seem obvious enough â€”3.5 inches. Sorry â€”remember that the default
units for horizontal parameters like the . 11 request are ems. So that expression
is really '7 ems / 2 inches', and when translated into machine units, it becomes
zero. How about

Still no good â€”the '2' is '2 ems*, so '7i/2 ' is small, although not zero. You
must use

So again, a safe rule is to attach a scale indicator to every number, even con
stants.

For arithmetic done within a . nr request, there is no implication of horizontal or
vertical dimension, so the default units are 'units', and 7i/2 and 7i/2u mean the
same thing. Thus

does just what you want, so long as you don't forget the u on the . 11 request.

When you use a number register as part of the text, the contents of the register
are said to be interpolated into the text at that point. For example, you could use
the following sequence:



126 Usingnrof f andtrof f

and when you formatted that sequence, it would appear as:

.. the value of the xy number register is: 567.

When interpolated, the value of the number register is read out as a decimal
number. You can change this format by using the . a f (assign format) request to
get things like Roman numerals or sequences of letters. Here is the example of
the auto-incrementing section above, but with the interpolation format now set
for lower-case Roman numerals:

When we format the above sequence, we get the following:

.. the odd Roman numerals i, iii, v, vii, ix, xi,

A decimal format having N digits specifies a field width of N digits.

Read-only number registers and the width function are always decimal.

The table below shows the different formats you can apply to a number register
when it is interpolated.

Table 11-3 Interpolation Formats for Number Registers

®~>~sun
micros ystems

Revision A, of 9 May 1988



Chapter 11 â€”Number Registers 127

Summary of the . a f Request

assign format
.af Rc

Mnemonic:

Form of Request:
Initial Value: Arabic

If No Argument:

Explanation;

Ignored

Assign format c to rtegisterR.

11.5.. r r â€”Remove
Number Registers

.rr xy

removes the xy number register from the list.

remove registerMnemonic:

Form of Request:
Initial Value:

.rr R
Not applicable

Ignored

Remove register R. If many registers are being created dynamically, it may
become necessary to remove no-longer-used registers to recapture internal
storage space for newer registers.

If No Argument:

Explanation:

®~®~sunmicros ystems
Revision A, of 9 May 1988

If you create many number registers dynamically, you may have to remove
number registers that you aren't using any more to recapture internal storage
space for newer registers. You remove a number register with the . rr (remove
register) request:





Drawing Lines and Characters

Drawing Lines and Characters .... 131

131

12.2. Arbitrary Local Horizontal and Vertical Motions ............

Nv Function â€”Arbitrary Vertical Motion ..........................

Nh Function â€”Arbitrary Horizontal Motion ....................

12.3. N0 Function â€” Digit-Size Spaces ............................................

12.4. ' N ' Function â€” Unpaddable Space .........................................

12.5. N I and 4" Functions â€”Thick and Thin Spaces .............

12.6. Ns Function â€”Non-Printing Zero-Width Character ..

12.7. No Function â€”Overstriking Characters ...............................

12.8. Nz Function â€”Zero Motion Characters ..............................

132

132

133

134

136

136

137

138

139

12.9. Nw Function â€”Get Width of a String ............................

12.10. Nk Function â€”Mark Current Horizontal Place ....

140

141

12.11. ~b Function â€”Build Large Brackets .............

12.12. Nr Function â€”Reverse Vertical Motions ....

142

143

12.13. Drawing Horizontal and Vertical Lines ....

Nj. Function â€”Draw Horizontal Lines .......

143

143

4L Function â€”Draw Vertical Lines

Combining the Horizontal and Vertical Line Drawing
Functions .................................................................................................... 145

12.14.. mc â€”Place Characters in the Margin .... 145

12.1. Nu and Nd Functions â€”Half-Line Vertical Movements ....





Drawing Lines and Characters

This section is a grab-bag of functions for moving to arbitrary places on the page
and for drawing things. This section covers a number of useful topics:

o Local motions â€”how to move forward and backward and up and down on
the page to get special effects.

u Constructing whole characters out of pieces of characters that are available
in the special font â€”these facilities are for doing mathematical typesetting.

o Drawing horizontal and vertical lines to make boxes and underlines and
such.

Various types of padding characters, zero-width characters, and functions for
obtaining the width of a character string.

12.1. ~u and ~d Functions
â€”Half-Line Vertical
Movements

If you can't or don't want to use eqn, subscripts and superscripts are then most
easily done with the half-line local motions Nu (for up) and Nd (for down). To
move up the page half a point, insert a Nu at the desired place, and to go down
the page half a point, insert a Nd at the desired place. The Nu and 4d in-line
functions should always be used in pairs, as explained below. Thus if your input
consists of the following fragment:

area of a circle is 'Area = N{*prtu2td' whencalculating

the output when that fragment is formatted consists of:

... area of a circle is 'Area = xr ' when calculating ..

This is a first approximation of what you want, but the superscript '2' is too
large. To make the '2' smaller, bracket it with 4sâ€”2... Ns 0. This reduces the
point-size by two points before the superscript and restores the point-size to the
previous value after the superscript. This example input:

area of a circle is 'Area = 5{*pr4utts-22ksONd'when calculating

when formatted, generates:

®~>~sun
micros ystems

Revision A, of 9 May 1988131

Most of these commands are straightforward, but messy to read and tough to type
correctly.



132 Usingnrof f andtrof f

area of a circle is 'Area = xr ' when calculating ..

... area of a circle is 'Area = err ' when calculating...
As you can see, the baseline is higher after the incorrectly-displayed equation.

4v Function â€”Arbitrary
Vertical Motion

~v ' amount

and when we format that verse we get:

®~>~sun Revision A, of 9 May 1988

12.2. Arbitrary Local
Horizontal and
Vertical Motions

Now the reason that the Nu and Nd functions should always be correctly paired is
that they refer to the current vertical spacing, so you must be sure to put any
local motions either both inside or both outside any size changes, or you will get
an unbalanced vertical motion. Carrying this example further, the input could
look like this:

area of a circle is 'Area = N(*prNu4s-22hdhsO' when calculating

We' ll format that example in a larger point-size so that you can see the effect of
the baseline being out of whack. So when we format the above construct with
the motions incorrectly paired, we get this:

The next two sections describe the in-line Nv (vertical) and the Nh (horizontal)
local motion functions. The general form of these functions is ~v 'N ' for the
vertical motion function, and Nh 'N ' for the horizontal motion function. The
argument N in the functions is the distance to move. The distance N may be
negative â€”the positive directions are to the right and down.

A local motion is one contained within a line. To avoid unexpected vertical
dislocations, it is necessary that the net vertical local motion within a word in
filled text, and otherwise within a line, be zero.

Sometimes the space given by Nu and Nd is not the right amount (usually too
much). The in-line Nv function requests an arbitrary amount of vertical motion.
The in-line Nv function

moves up or down the page by the amount specified in amount. For example,
here's how to get a large letter at the start of a verse:



Chapter 12 â€”Drawing Lines and Characters 133

wake! for Morning in the Bowl of Night
as flung the Stone that puts the Stars to Flight:

And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.3

The indent amount we used here (0.3 inch) was determined by fiddling around
until it looked reasonable. Later we show another in-line function for measuring
the actual width of something.

A minus sign means upward motion, while no sign or a plus sign means move
down the page. Thus ~v' â€”j.' means an upward vertical motion of one line space.

There are many other ways to specify the amount of motion. The following three
examples are all legal.

Notice that the scale specifier {i, p, or m)goes inside the quotes. Any character
can be used in place of the quotes; this is also true of all other tr of f commands
described in this section.

Since tro f f does not take within-the-line vertical motions into account when
figuring out where it is on the page, output lines can have unexpected positions if
the left and right ends aren't at the same vertical position. Thus Nv, like Nu and
4d, should always balance upward vertical motion in a line with the same
amount in the downward direction.

Arbitrary horizontal motions are also available â€”Nh is quite analogous to Nv,
except that the default scale factor is ems instead of line spaces. As an example,

4h Function â€”Arbitrary
Horizontal Motion

Nh'-O.li'

causes a backward motion of a tenth of an inch. As a practical matter, consider
printing the mathematical symbol '»'. The standard spacing is too wide, so
eqn replaces this by

>Kh'-0.3m'>

to produce m.

Frequently Nh is used with the width function, 4w, to generate motions equal to
the width of some character string. The construction

3 Omar Khayyam â€”the Rubaiydt

®~>~sunmicrosystems
Revision A, of 9 May 1988



134 Usingnrof f andtrof f

~w' thing'

is a number equal to the width of 'thing' in machine units (1/432 inch). All
tr of f computations are ultimately done in these units. To move horizontally
the width of an 'x', we can say

Nh'Nw'x'u'

As we mentioned above, the default scale factor for all horizontal dimensions is
m(ems), so here we must have the u for machine units, or the motion produced
will be far too large. t ro f f is quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As a live example of this kind of construction, the ce, a, CE,and W ligatures dis
cussed in the section on ligatures in the chapter Fonts and Special Characters,
were constructed using the Nh function to define the following strings:

and for any given one of those strings, the mess is unscrambled like this:

12.3. NOFunctionâ€”
Digit-Size Spaces

The in-line N0 function is an unpaddable white space of the same width as a
digit. 'Unpaddable* means that it will never be widened or split across a line by
line justification and filling. You could use the digit space to get numerical
columns correctly lined up. For example, suppose you have this list of items:

>~+sun
micros ystems

Revision A, of 9 May 1988



Chapter 12 â€”Drawing Lines and Characters 135

When you format this list of operations, you get this result:

Step Description

1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses.

As you can see, the numbers do not line up at the decimal point, but instead are
lined up on the left. Placing a space character in front of the digits in the input is
not sufficient measure to line up the digits at the decimal. A space is not the
same width as a digit (at least not in tro f f). A solution is to use the unpad
dable digit-space character N0 in front of the single digits like this:

Now when you format the text, you get this result:

+Sun Revision A, of 9 May 1988



136 Usingnrof f andtrof f

Step Description

1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses.

which looks better than the previous example.

There is also the in-line Nfunction, which is the Ncharacter (backslash) followed
by a space character. This function is an unpaddable character the width of a
space. You can use this to make sure that things don't get split across line boun
daries, for instance if you want to see something like nrof'f â€”Tlp myfile in
the stream of text, with the command line set off like it was here and ensuring
that it all appears on one line, you would type it in as

Nf(LBnroffh -TlphfPN NfImyfilehfPN
in-line in the text.

12.4. 'N ' Functionâ€”
Unpaddable Space

12.5. ~ I and ~ Functions
â€”Thick and Thin
Spaces

In typography, there are times when you need spaces that are one-sixth or one
twelfth of the width of an em-space. t ro f f supplies the in-line N) function
which is one-sixth of an em-space wide â€”this is sometimes called a 'thick
space'. Where would you want such a thing? Well one place it could be used is
in making an ellipsis look better. In general, an ellipsis in a proportional font
looks too cramped if you just string three dots together:

and the dots tend to look too spread out if you just place spaces between them:

which was actually achieved by typing:

Lastly, the in-line N" function is one-twelfth of the width of an em-space space.
This function is almost always used for a typographical application called italic
correction. Consider an italic word followed by some punctuation such as do
tell! Because the italic letters are slanted to the right, they lean slightly on the

>~>~sun
micros ystems

Revision A, of 9 May 1988

and so the answer is often to use the thick space to get a more pleasing effect like
this:



Chapter 12 â€”Drawing Lines and Characters 137

trailing punctuation, especially when the last letter is a tall one like the l in the
example. So, what typographers do is to apply the italic correction in the form of
a thin space just before the punctuation, so that the effect is now do tell! What
we actually typed here was

Kfldo tellhfPS"!

with the italic correction just before the exclamation mark.

Typing the italic correction at every instance of adjacent Roman and italic text,
would be a lot of work. Some macro packages construct special-purpose macros
for applying the italic correction. For example, the -man macro package has a
. IR macro that joins alternating italic and Roman words together so that you can
italicize parts of words or have italic text with trailing Roman punctuation. You
use the . IR macro like:

.IR well spring

to get the composite effect of wellspring in your text. The . IR macro (some
what simplified) looks like this:

.de IR
%4%r1%%$1%"XrRX%$2%r14%$3%"SIR'LN$4%rINN$5% XERXX$6%II'L%$7%"XIRNX$8%r1%%$9%"'LXR

and you can see the italic correction applied after every parameter that is set in
the italic font.

12.6. Na Function â€”Non
Printing Zero-Width
Character

The Na function is a character that does not print, and does not take up any space
in the output text. You might wonder what use it is at aIl? One application of
the non-printing character used throughout this manual is to display examples of
textcontainingtro f f or nro f f requests. To printa tro f f requestjust as it
appears in the input, you have to distinguish it from a real tr of f request. You
cannot print an example whose input looks just like this:

The . characters at the beginning of each line would be interpreted as tro f f
requests instead of text representing examples of requests. In such cases, we
have to use the 4a functionto stop trof f or nrof f frominterpretingthe . at
the start of the line as a control character. We would type the example like this:

>~®~sun Revision A, of 9 May 1988



138 Usingnrof f andtrof f

Another place where the N&function is useful is within some of the other in-line
functions such as the N1 function. The ~1 function draws lines and you type the
function like:

~1' length character

where length is the length of the line you want to draw, and character is the char
acter to use. Sometimes, the character might look like a part of length, for
instance,

hl'1.0i='

doesn't get you a one-inch line of = signs as you might expect, because the =
sign looks like an expression where you are trying to say that "1.0i is equal to"
something else. When you encounter this situation, type the N1 function like
this:

h1'1.0ih&='

and the result is a one-inch line of â€”â€”â€”â€”â€”â€”signs as you see here.

12.7. ~o Functionâ€”
0verstriking
Characters

Automatically-centered overstriking of up to nine characters is possible with the
in-line 4o (overstrike) function. The No function looks like No' string' where
the characters in string ate overprinted with their centers aligned. This means for
example, that you can print from one to nine different characters superimposed
upon each other. t zo f f determines the width of this "character" you are creat
ing to be the width of the widest character in your string. The superimposed
characters are then centered on the widest character. The string should not con
tain local vertical motion. The in-line No function is used like this:

4o"set of characters"

This is useful for printing accents, as in

systNo"e4 (ga"me tNo"eN(aa"1No"eN(aa"phonigue

>~>~sunmicrosysterra
Revision A, of 9 May 1988



Chapter 12 â€”Drawing Lines and Characters 139

which produces

systbme tdldphonique

The accents are N(ga (grave accent) and N(aa (acute accent), or N' and ~ ",
rememberthat each is just one characterto tr of f.

If eh II

produces

No"N(moN(s1"

produces

12.8. Nz Function â€”Zero
Motion Characters

is produced by

.sp 2
~s84z~(ci~s14~z~(ci~s22Nz4(ci4s36Nz4(ci

The . sp 2 line is needed to leave enough vertical space for the result.

As another example, an extra-heavy semicolon that looks like

; insteadof; or,

can be constructed with a big comma and a big period above it:

Ns+6hz, Nv'-0.25m' . Nv' 0.25m' hs0

where 0 . 2 5m is an empirical constant.

As further examples, Nz N(cia (pl produces

>~®~sun
micros ystems

Revision A, of 9 May 1988

You can make your own overstrikes with another special convention, Nz, the
zero-motion command. Nz x suppresses the normal horizontal motion after
printing the single character x, so another character can be laid on top of it.
Although sizes can be changed within No, tro f f centers the characters on the
widest of them, and there can be no horizontal or vertical motions, so Nz may be
the only way to get what you want:



140 Usingnrof f andtrof f

and 4 (br 4z N(rnid (ul k (br produces the smallest possible constructed box:

There is also a more general overstriking function for piling things up vertically
â€”this topic is discussed in the section "~b Function â€”Build Large Brackets"
later in this chapter.

12.9. 4w Function â€”Get
Width of a String

Back in the section on using tabs, we saw how we could set tab stops to various
positions on the line and lay stuff out in columns based on the tab stops. Some
times it is hard to figure out where the tab stops should go because you can' t
always tell in advance how wide things are â€”this is especially true for propor
tional fonts (by definition the characters aren't all the same size). Often what you
want is to set tab stops based on the width of an item. Then you can set tab stops
based on that width and remain independent of the size of the characters if you
decide to change point size.

The in-line width function Nw'string ' generates the numerical width of string
(in basic units). For example, . ti. â€”Nw'1. 'u could be used to temporarily
indent leftward a distance equal to the size of the string '1. '. Size and font
changes may be safely embedded in string, and do not affect the current environ
ment.

In a previous example we showed how a large capital letter could be placed in a
verse with vertical motions and we played some games with indenting to get the
thing to come out more-or-less right. The problem with that approach is that we
had to measure the size of the character and arrive at the indent by trial and error
(actually, error and trial). Another problem is that the measured indent didn' t
take the point-size into account â€”if we decide to change sizes, the measure
ments are all wrong. The width function can measure the size of the thing
directly, so here's our example all over again using the ~w function:

and when we format that text we get this result:

A wake!forMorningin the Bowlof NightHas flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

The width function also sets three number registers. The registers st (string top)
and sb (string bottom) are set respectively to the highest and lowest extent of
string relative to the baseline; then, for example, the total height of the string is
Nn(stu â€”~n (sbu. In trof f the number register ct (charactertype) is set to a
value between 0 and 3:

>~®~sun
micros ystems

Revision A, of 9 May 1988



Table 12-1 trof f WidthFunctionâ€”ct Number Register Values

The in-line Nkx function stores the current horizontal position in the input line
into register x. As an example, we could get a bold italic effect by the construc
tion:

4kxword ~h ' I~nxu+2u 'word

This emboldens word by backing up to its absolute (hence, the I)beginning
(Umword'4 Rnxu)plus 2 machine units (+2u) and overprinting it, resulting in

word

Revision A, of 9 May 1988

12.10. Nk Functionâ€”
Mark Current
Horizontal Place

®+>~sun

Chapter 12 â€”Drawing Lines and Characters 141



142 Usingnrof f andtrof f

Table 12-2 Pieces for Constructing Large Brackets

4b 'string

Revision A, of 9 May 1988

12.11. ~b Functionâ€”
Build Large
Brackets

The Special (mathematical) font contains a number of characters for constructing
large brackets out of pieces. The table below shows the escape-sequences for the
individual pieces, what they look like, and their names.

These pieces can be combined into various styles and sizes of brackets and
braces by using the in-line Nb (for bracketing) function. The Nb function is used
like this:

to pile up the characters vertically in string with the first character on top and the
last on the bottom. The characters are vertically separated by one em and the
total pile is centered 1/2-em above the current baseline (1/2-line in nr o f f). For
example:

Nx' â€”0.5m' Nx'0.5m' Nb' 4 (1ch (1f 'Eh Ihb' N(rcpt (rf '

produces E . As with previous examples, we should unscramble the whole

mess for you:

~~>~sunmicrosystsms



by typing this:

41 Function â€”Draw
Horizontal Lines

The general form of the N1 function is

41 'length character'

«g~®sunmiorosystems
Revision A, of 9 May 1988

12.12. 4r Functionâ€”
Reverse Vertical
Motions

12.13. Drawing Horizontal
and Vertical Lines

Chapter 12 â€”Drawing Lines and Characters 143

Here's another example of using braces and brackets. You get this effect:

Kb'X (1th (1k%(1b' %b K(1ch (1f ' x Kb'%(re% (rf ' Kb'K (rth (rk4 (rb'

The Nr function makes a single reverse motion of one em upward in t r of f,
and one line upward in nr of f.

Typesetting systems commonly have commands to draw horizontal and vertical
lines. Of course typographers don*t call them lines â€”they are called 'rules'
because once upon a time they were drawn with rulers. tro f f provides a con
venient facility for drawing horizontal and vertical lines of arbitrary length with
arbitrary characters, and these facilities are described in the subsections follow
ing.

The in-line N1 (lower-case ell) function draws a horizontal line. For example,
the function ~1 ' 1. Oi ' draws a one-inch horizontal line like this

in the text.

The line is actually drawn using the baseline rule character in tr o f f, and the
underline character in neo f f, but you can in fact make the character that draws
the line any character you like by placing the character after the length designa
tion. For example, you could draw a two inches of tildes by using ~1'2 . Oi ' to
get in the text. The construction ~L is entirely
analogous, except that it draws a vertical line instead of horizontal.



144 Usingnrof f andtrof f

where length is the length of the string of characters to be drawn, and character
is the character to use to draw the line. If character looks like a continuation of
length, you can insulate character from length with the zero-width Ns sequence.
If length is negative, a backward horizontal motion of size length is made before
drawing the string. Any space resulting Aom length/(size of character) having a
remainder is put at the beginning (left end) of the string. In the case of characters
that are designed to be connected such as baseline-rule ( ), underrule ( ), and
root-en ( ), the remainder space is covered by overlapping. If length is less than
the width of character, a single character is centered on a distance length. As an
example, here is a macro to underscore a string:

and you use the . u s macro like this:

.us "underlined words"

to yield underlined words in the stream of text. You could also write a macro to
draw a box around a string:

and so you can type:

.bx "words in a box"

4L Function â€”Draw Vertical
Lines

The in-line NL (upper-case ell) function draws a vertical line. As in the case of
the N1 function, the general form of the function is

L 'length character'

This draws a vertical line consisting of the (optional) character character stacked
vertically apart 1em (1 line in nro f f), with the first two characters overlapped,
if necessary, to form a continuous line. The default character is the box rule,
~( N(br); theothersuitablecharacteris theboldvertical ~ ( N(bv). Theline
is begun without any initial motion relative to the current base line. A positive
length specifies a line drawn downward and a negative length specifies a line
drawn upward. After the line is drawn no compensating motions are made; the
instantaneous baseline is at the end of the line.

®~@sunmicrosystems
Revision A, of 9 May 1988



Chapter 12 â€”Drawing Lines and Characters 145

The horizontal and vertical line drawing functions may be used in combination to produce large boxes. The zero
width box-rule and the '/z-em wide underrule were designed to form comers when using one-em vertical spacings.
For example the macro

.de eb

.sp -1 ~"compensate for next automatic baseline spacing

.nf N"avoid possibly overflowing word buffer
hh' â€.5n'NL'I NNnzuâ€”1'Nl'Nhn(.lu+lnh(ul'NL' â€] NNnzu+1'Kl' IOuâ€ .5nh(ul'

N"draw box

draws a box around some text whose beginning vertical place was saved in number register z (using .mk z) as done
for this paragraph.

.mc 4s12N (brNsO

.mc

request to turn off the marginal bars.

®<><S ll Il Revision A, of 9 May 1988

Combining the Horizontal
and Vertical Line Drawing
Functions

12.14.. mc â€”Place
Characters in the
Margin

Many types of documents require placing specific characters in the margins. The
most common use of this is placing bars down the margins to indicate what' s
changed in a document from one revision of a document to the next. This para
graph and the remainder of the text in this section were preceded by a

request (that is, place a 12-point box-rule character in the margin) to turn on the
marginal bars, and followed by a simple

Currently, this request is not bug-free, and the margin character only appears to
the right of the right margin, but not in left margins. Also, you' ll notice that the
marginal bars do not appear on incomplete lines, such as this one.



146 Usingnrof f andtrof f

margin character
.mc cN

E, m (see Table A-2)Notes:

>~®~sunmicrosystems
Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Not applicable

Tum off margin characters

Specifies that a margin character c appear a distance N to the right of the
right margin after each non-empty text line (except those produced by . t j ).
If the output line is too long (as can happen in nofill mode) the character is
appended to the line. If N is not given, the previous N is used; the initial N
is 0.2 inchesin nr of f and 1em in tr of f.



Character Translations

Character Translations .... 149

149

149

150

13.4.. t r â€”Output Translation .... 150

13.1. Input Character Translations,..............................................................

13.2.. ec and . eo â€”Set Escape Character or Stop Escapes ....

13.3.. cc and . c2 â€”Set Control Characters .....................................





Character Translations

13.1. Input Character
Translations

The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are
accepted, and may be used as delimiters or translated into a graphic with a . t r
(translate) request (refer to the section entitled . tr â€”Output Translation). All
others are ignored.

13.2.. ec and . eo â€”Set
Escape Character or
Stop Escapes

The escape character Nintroduces escape sequences â€”meaning the following
character is something else, or indicates some function. A complete list of such
sequences is given in a later chapter. The Ncharacter should not be confused
with the ASCIIcontrol character ESC of the same name. The escape character
can be changed with an . e c (escape character) request, and all that has been said
about the default Nbecomes true for the new escape character. Ne can be used to
print whatever the current escape character is. If necessary or convenient, the
escape mechanism can be tumed off with an . eo (escape off) request and
restored with the . e c request.

Mnemonic: escape character
.ec cForm of Request:

Initial Value:

If No Argument:

Explanation: Set escape character to N,or to c, if given.

escape mechanism offMnemonic:

Form of Request:

Initial Value:

.eo

Escape mechanism is on

Tum escape mechanism off.

Tum escape mechanism off.

If No Argument:

Explanation:

><>~sun 149 Revision A, of 9 May 1988

) I ~ I /



150 Usingnrof f andtrof f

13.3.. cc and . c2 â€”Set
Control Characters

control characterMnemonic:

Form of Request:

Initial Value:

.CC C

If No Argument:

Explanation:

Summary of the . c2 Request

no-break control character

.c2 c

13.4.. t r â€”Output
Translation

Summary of the . tr Request

translateMnemonic:

Form of Request:

Initial Value:

.tr abed...

Not Applicable

No translationIf No Argument:

Explanation:

Notes:

%~+sun
microsystems

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Both the control character . and the no-break control character ' may be
changed, if desired. Such a change must be compatible with the design of any
macros used in the span of the change, and particularly of any trap-invoked mac
ros.

Set the basic control character to c, or reset to ' . '.

Set the no-break control character to c, or reset to ' ' '.

One character can be made a stand-in for another character using the . t r
(translate) request. All text processing (for instance, character comparisons)
takes place with the input (stand-in) character that appears to have the width of
the final character. The graphic translation occurs at the moment of output
(including diversion).

Translate a into b, c into d, etc. If an.odd number of characters is given, the
last one is mapped into the space character. To be consistent, a particular
translation must stay in effect from input to output time.

0 (see Table A-2)



Automatic Line Numbering ....... 153

14.1.. nmâ€”Number Output Lines 153

14.2.. nn â€”Stop Numbering Lines .... 154

Automatic Line Numbering





14.1.. nmâ€”Number
Output Lines

Output lines may be numbered automatically via the . nm (number) request.
Refer to the following table for a summary of the . nm request. When in
effect, a three-digit, Arabic number and a digit-space begins each line of
output text. The text lines are thus offset by four digit-spaces, and otherwise
retain their line length. To keep the right margin aligned with an earlier
margin, you may want to reduce the line length by the equivalent of four
digit spaces. Blank lines, other vertical spaces, and lines generated by . t1
are not numbered. Numbering can be temporarily suspended with the . nn
(no number) request (see below), or with an . nm followed by a later . nm
+O. In addition, a line number indent I, and the number-text separation S
may be specified in digit-spaces. Further, it can be specified that only those
line numbers that are multiples of some number M are to be printed (the oth
ers will appear as blank number fields).

12

Summary of the . nmRequest

Mnemonic: numbering

Form of Request:

Initial Value:

. nmkNM SI

Line numbering tumed off.

Line numbering tumed off.

Tum on line numbering if +~ is given. The next output line numbered is
numbered ~. Default values are M= 1, S= 1, and I= 0. N is the line
numbercounter (or incrementerif you use ~, M is the multiple of the
numbered lines to be printed on the page, S is the spacing between line
numbers and text, and I is the amount of indent for the line numbers.
Parameters corresponding to missing arguments are unaffected; a non
numeric argument is considered missing. In the absence of all arguments,
numbering is tumed off; the next line number is preserved for possible
further use in number register 1n.

If No Argument:

Explanation:

Notes: E (see Table A-2)

®g>~sunmicrosystems
Revision A, of 9 May 1988153

kA'%$%w

Automatic Line Numbering



154 Usingnrof f andtrof f

14.2.. nn â€”Stop
Numbering Lines

Summary of the . nn Request

no numbering
.nnN

Not applicable

N= 1

15

18

21

®~®~sunmicrosystltts
Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

When you are using the . nm request to number lines (as discussed above), you
can temporarily suspend the numbering with the . nn (no number) request.

The next N text output lines are not numbered.

E (see Table A-2)

As an example, the paragraph portions of this chapter are numbered with
M=3: . nm j. 3 was placed at the beginning of the chapter, . nm was
placed at the end of the first paragraph; and . nm +0 was placed in front of
this paragraph; and . nm finally placed at the end. Line lengths were also
changed (by Nw' 00 00 'u) to keep the right side aligned.

Another example is

.nm +5 5 x 3

which turns on numbering with the line number of the next line to be 5
greater than the last-numbered line, M= 5, spacing S is untouched, and with
the indent I set to 3.



Conditional Requests

Conditional Requests .... 157

157

160

15.3.. ig â€”Ignore Input Text .... 160

15.1.. i f â€”Conditional Request ............................................

15.2.. ie and . el â€”If-Else and Else Conditionals ....





Conditional Requests

15.1.. i f â€”Conditional
Request

.if ~~n(SH=1.sp 2i ~" first section only

The condition after the . i f can be any arithmetic or logical expression. If the
condition is logically true, or arithmetically greater than zero, the rest of the line
is treated as if it were text â€”here a request. If the condition is false, or zero, or
negative, the rest of the line is skipped.

It is possible to perform more than one request if a condition is true. Suppose
several operations are to be done before section 1. One possibility is to define a
macro . S1 and invoke it if we are about to do section 1 (as determined by a
. if).

An alternate way is to use the extended form of the . i f, like this:

.if ~~n(SH=14(--- processing for section 1 ----Kl

The braces N( and 4 ) must occur in the positions shown or you will get unex
pected extra lines in your output. tro f f also provides an 'if-else' construction,
which we will not go into here.

A condition can be negated by preceding it with !; we get the same effect as
above (but less clearly) by using

+g+~S 0 Ilmicrosystems
157 Revision A, of 9 May 1988

Suppose we want the . SH macro to leave two extra inches of space just before
section 1, but nowhere else. The cleanest way to do that is to test inside the . SH
macro whether the section number is 1, and add some space if it is. The . i f
request provides the conditional test that we can add just before the heading line
is output:



158 Usingnrof f andtrof f

.if !Nhn(SH>1 .Sl

There are a handful of other conditions that can be tested with . i f. For exam
ple, is the current page even or odd?

.if e .tl ''even pagetitle''

.if o .tl ''odd pagetitle''

gives facing pages different titles when used inside an appropriate new page
macro.

Two other conditions are t and n, which tell you whether the formatter is
trof f ornrof f.

.if t troff stuff

.if n nroff stuff

Finally, string comparisons may be made in an . i f:

.if ' stringl' string2' stuff

In the following table, c is a one-character, built-in condition name, ! signifies
not, N is a numerical expression, string1 and string2 are strings delimited by any
non-blank, non-numeric character not in the strings, and anything represents
what is conditionally accepted.

>~+sun
microsystems

Revision A, of 9 May 1988

does 'stuff' if string1 is the same as string2. The character separating the strings
can be anything reasonable that is not contained in either string. The strings
themselves can reference strings with N*, arguments with N$, and so on.



Mnemonic:(if, if-else, else

Form of Request:

Initial Value:
. if c anything

Not Applicable

Not ApplicableIf No Argument:

Explanation If condition c true, accept anything as input. In multi-line case use ({any
thing 3}.

Form of Request:

Explanation

. if !c anything

If condition c false, accept anything.

. if N anything

If expression N > 0, accept anything.

. if !N anything

If expression¹ 0, acceptanything.

. if ' string1 'string2 ' anything

If string1 identical to string2, accept anything.

. if ! ' string1 'string2 ' anything

If string1 is not identical to string2, accept anything.

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

. el anything

Else portion of if-else.

The built-in condition names are:

Table 15-1 Built-In Condition Namesfor Conditional Processing

®~~>sunmicrosysiems
Revision A, of 9 May 1988

Summary of the . i f Requests

. ie c anything

If portion of if-else pike above i f forms).

Chapter 15 â€”Conditional Requests 159



160 Usingnrof f andtrof f

Some examples are:

.if e .tl ' Even Page

15.3.. ig â€”Ignore Input
Text

Revision A, of 9 May 1988

15.2.. ie and . el â€”If
Else and Else
Conditionals

If the condition c is true, or if the number N is greater than zero, or if the strings
compare identically (including motions and character size and font), anything is
accepted as input. If a ! precedes the condition, number, or string comparison,
the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped
over. The anything can be either a single input line (text, macro, or whatever) or
a number of input lines. In the multi-line case, the first line must begin with a
left delimiter 4 ( and the last line must end with a right delimiter N}.

The request . ie (if-else) is almost identical to . i f except that the acceptance
state is remembered. A subsequent and matching . el (else) request then uses
the reverse sense of that state.. ie â€”. el pairs may be nested. Refer to the
Summaryof the . i f Requests for summaries of . i e and . el.

which outputs a title if the page number is even; and

which treats page 1 differently from other pages.

Another mechanism for conditionally accepting input text is via the . ig (ignore)
request. Basically, you place the . ig request before a block of text you want to
ignore:

The . ig request functions like a macro definition via the . de request except
that the text between the . ig and the terminating .. is discardedinstead of
being processed for printing.

You can give the . ig request an argument â€”that is, an

+~>~sunmicrosystems



Chapter 15 â€”Conditional Requests 161

request ignores all text up to and including a line that reads

.zy

which looks just like a request:

You can of course combine the . ig request with the other conditionals to ignore
a block of text if a condition is satisfied. For example, you might want to omit
blocks of text if the printed pages are destined for different audiences:

®~+sun
microsystems

Revision A, of 9 May 1988



162 Usingnrof f andtrof f

Summary of the . i g Request

ignoreMnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Q+~sull Revision A, of 9 May 1988

Not applicable

Ignore text up to a line starting with .

Ignore input lines up to and including a line starting with .yy â€”use .. if
no argument is specifiedon the request.. j.g behaves exactly like the . de
(define macro) request except that the input is discarded. The input is read
in copy mode, and any auto-incremented number registers will be affected.



Debugging Requests

Debugging Requests ..... 165

16.1.. pm â€”Display Names and Sizes of Defined Macros ....

16.2.. f 1 â€”Flush Output Buffer ..........................................................

16.3.. ab â€” Abort ..........................................................................................

165

166

166

""".""+hW"""Nh'hhNgvj~h'h3+/A' $jjh"iP~hh'@h~hNWhi'4 . hh:. 4OYg. vhi,. 4y h"X1 " hh"'8~!'' ~hh:."'; "~%+A;»4 ".'i '.+A





print macrosMnemonic:

Form of Request:

Initial Value:

.pmt
Not applicable

lf No Argument:

Explanation:

>~>~sunmhrosystems
165 Revision A, of 9 May 1988

16.1.. pm â€”Display
Names and Sizes of
Defined Maeros

Debugging Requests

tr of f and nro f f resemblelanguagesfor programminga typesetterrather than
a mechanism to describe how a document should be put together. There are
times when you just can't figure out why things are going wrong and not generat
ing results as advertised. The requests described here are for dyed-in-the-wool
macro wizards.

The .prn (print macros) request displays the names of all defined macros and
how big they are. Why would anybody want to do such a thing? Well, if you' re
using a macro as a diversion, you might find out (by printing its size) that it is far
bigger than you expect (that it's swallowing your entire file).

Print macros. The names and sizes of all of the defined macros and strings
are printed on the user's terminal; if t is given, only the total of the sizes is
printed. The sizes are given in blocks of 128 characters.



166 Usingnrof f andtrof f

16.2.. f j. â€”Flush Output The . f j. (flush) request flushesthe output buffer â€”this can be used when you're
Buffer using nro f f interactively.

flush

16.3.. ab â€”Abort

Summary of the . ab Request

abort

. ab text

Not applicable

+>~sun Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Mnemonic:

Form of Request:
Initial Value:

If No Argument:

Explanation:

Not applicable

adjusting is tumed off

Hush output buffer. Used in interactive debugging to force output.

A final useful request in the debugging category is the . ab (abort) request which
basically bails out and stops the formatting.

No text is displayed

Displays text and terminates without further processing. If text is missing,
'User Abort' is displayed. Does not cause a break. The output buffer is
flushed.



Environments

Environments ....

17.1.. ev â€”Switch Environment

169

169





Environments

As we mentioned, there is a potential problem when going across a page bound
ary: parameters like size and font for a page title may well be different from
those in effect in the text when the page boundary occurs. t ro f f provides a
very general way to deal with this and similar situations. There are six environ
ments, each of which has independently-settable versions of many of the parame
ters associated with processing, including size, font, line and title lengths,
fill/nofill mode, tab stops, and even partially-collected lines. Thus the titling
problem may be readily solved by processing the main text in one environment
and titles in a separate one with its own suitable parameters.

17.1.. ev â€”Switch
Environment

The command . ev n shifts to environment n; n must be in the range 0 through 2.
A . ev command with no argument returns to the previous environment.
Environment names are maintained in a stack, so calls for different environments
may be nested and unwound consistently.

When tr o f f starts up, environment 0 is the default environment, so in general,
the main text of your document is processed in this environment in the absence
of any information to the contrary. Given this, we can modify the . NP (new
page) macro to process titles in environment 1 like this:

It is also possible to initialize the parameters for an environment outside the . NP
macro, but the version shown keeps all the processing in one place and is thus
easier to understand and change.

Another major application for environments is for blocks of text that must be
kept together.

A number of the parameters that control the text processing are gathered together
into an environment, which can be switched by the user. The environment
parameters are those associated with requests noting E in their Notes column; in

®~+sun 169
mcroSyStsmS

Revision A, of 9 May 1988



170 Usingnrof f andtrof f

Summary of the . ev Request

If No Argument:

Explanation:

®~>sun Revision A of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

addition, partially-collected lines and words are in the environment. Everything
else is global; examples are page-oriented parameters, diversion-oriented param
eters, number registers, and macro and string definitions. All environments are
initialized with default parameter values.

environment

.evN
N=O

Switch back to previous environment

Switch to environment N, where 0~<<2. Switching is done in push-down
fashion so that restoring a previous environment must be done with . ev
rather than specific reference.



tro f f RequestSummary

tro f f Request Summary ..... 173





tro f f RequestSummary

This appendixis a quick-referencesummaryof t ro f f and nro f f requests. In
the followingtable, values separatedby a: are for nro f f and t ro f f respec
tively.

The notes in column four are explained at the end of this summary.

TableA-1 Summaryof nro f f and tro f f Requests

Initial If No Notes
Value Argument

Explanation

.ab text User Abortnone

.ad c adjust Eadj,both

.af Rc Arabic

Append to a macro.

.as xxstring ignored Append string to string xx.

.bd FN P Embolden font F by Nâ€”1 units.foff

.bd S FN P Embolden Special Font when current
font is F.t

off

.bp +M Bf,v Eject current page. Next page is
number¹

N=l

.br B Break.

.C2 C E Set nobreak control character to C.

E Set control character to c..CC C

173 Revision A, of 9 May 1988

Request
Form

®~>~sun
micros ystems

Displays text and terminates without
further processing; flush output buffer.

Adjust output lines with mode c from
~ j.

Assign format to register R (c = 1, i,
Z,a,A).



174 Usingnrof f andtrof f

Table A-1 Summaryof nro f f and tro f f Requestsâ€”Continued

Explanation

B,E Center following N input text lines..ce N off

.ch xxN v Change trap location.

P Constant character space (width) mode
(fontF ).t

.cs FNM off

.cu N E Continuousunderline in n ro f f; like
.ul introff.

N=loff

D Divert and append to xx.end. dcL XX

.de xxyy

Divert output to macro xx..di XX Dend

.ds xx string Define a string xx containing string.ignored

.dt Nxx D,v Set a diversion trap.off

Set escape character..ec c

.el anything Else portion of if-else.

End macro is xx.none none

Turn off escape character mechanism..eo on

.ev N Environment switched (push down).N=O previous

Exitfromnrof f/trof f..ex

.fc ab off off

B,E Fill output lines.

B Flush output buffer.

.fp NF ignoredR,I,B,S

Revision A, of 9 May 1988

Request
Form

Initial
Value

®<~+sun

If No Notes
Argument

Define or redefine macro xx; end at call
of yy.

Set field delimiter a and pad character
b.

Font named F mounted on physical
position 1<M<4.



Table A-1 Summaryof nrof f and trof f Requestsâ€”Continued

Initial
Value

If No Notes
Argument

Request
Form Explanation

.ft F previousRoman

.fz SFN Forces font F or S for special characters
to be in size N.

none

Hyphenation indicator character c.E.hc c

.hw wordl ... ignored Exception words.

.hy N previous E Hyphenate. N = mode.on

.ie c anything If portion of if-else; all above forms
(like . if).

. if c anything If condition c true, accept anything as
input, for multi-line use 3(anything 3).

If condition c false, accept anything.

If expression N > 0, accept anything.

If expression¹ 0, acceptanything.

. if 'stringl 'string2 'anything If stringl identical to string2, accept
anythi ng.

. if ! stringl string2 anythingâ€” If stringl not identical to string2,
accept anything.

~ig yy Ignore until call of yy.yy="

.in +N previousN=O B,E,m Indent.

.it Nxx Set an input-line count trap.off E

E Leader repetition character..1c c none

.1g N Ligature mode on if N>0.on on

.11 +M 6.5 in previous E,m Line length.

.1s N previousN=l

+~++sun Revision A, of 9 May 1988

. if !c anything

. if N anything

. if !N anything

Appendix A â€”trof f Request Summary 175

E Change to font F = x, xx, or 1 through
4. Also Vx, V(xx, VN.

E Output Nâ€”1 Vs after each text output
line.



176 Usingnrof f andtrof f

Initial If No
Value Argument

Request
Form ExplanationNotes

Length of title..1t +M 6.5 in E,mprevious

Set margin character c and separation
N.

E,moff

internalnone

E No output line adjusting.adjust.na

Need N vertical space (V= vertical
spacing).

.ne N N=lv D,v

No filling or adjusting of output lines.B,E.nf

No hyphenation.Ehyphenate.nh

.nm +MMSI off

E Do not number next N lines..nn N N= 1

.nr R+MM

D Tum no-space mode on..ns space

.nx filename Next file.end-of-file

Output saved vertical distance..Qs

Page number character.off.pc c

Pipe output to program (nro f f only)..pi program

Print macro names and sizes. If i

present, print only total of sizes.

Point size, also 'e+M.fEprevious10-point

Page length.11 in

Next page number is N.N=l ignored

v Page offset.0: 26/27 in previous

>~>+sunmicrosysrems
Revision A, of 9 May 1988

.ps +M

.pl +M

.pn +M

.po +M

Table A-1 Summaryof nro f f and tro f f Requestsâ€”Continued

D Mark current vertical place in register
R.

E Number mode on or off, set parameters.

u Define and set number register R by
M; auto-incrementby M.



Table A-1 Summaryof nro f f and trof f Requestsâ€”Continued

ExplanationNotes

Read insertion.prompt=BEL. rd prompt

ignored Rename request, macro, or string xx to.rn xxyy

Remove request, macro, or string.ignored

.rr R Remove register R.

.rs

.rt +M
internal

none

.so filename

.sp N N=lv B,v

.ss N 12i36 em ignored

.sv N v Save vertical distance N.N=1V

.ta Nt... 0.8: 0.Sin none

E Tab repetition character.removed.tc c space

.ti +W ignored B,E,m Temporary indent.

. t1 'left center'ri ght Three-part title.

.tm string newline

.tr abed.... 0none

.uf F Italic Italic

.ul N off N=l

Revision A, of 9 May 1988

Request
Form

Initial If No
Value Argument

%~~+sun
+

microsysiems

AppendixA â€”traf f Request Summary 177

D Restore spacing. Turn no-space mode
off.

D,v Return (upward only) to marked verti
cal place.

Interpolate contents of source file name
when . so encountered.

Space vertical distance N in either
direction.

E Space-character size set to N/36 em.f

E,m Tab settings: left type, unless t equals R
(right), or C (centered).

Print string on terminal (to standard
error).

Translate a into b, c into d, etc. on out
put.

Underline font set to F (to be switched
to by .ul).

E Underline N input lines (italicize in
trof f).



178 Usingnrof f andtrof f

f Point size changeshave no effect in nro f f.

g The use of as the control character (instead of .) suppresses the break function.

Table A-2 Notes in the Tables

ExplanationNote

>~>~sun Revision A, of 9 May 1988

B
D
E
0
P
v

P
m
u

Table A-1 Summaryof nrof f and trof f Requestsâ€”Continued

Request normally causes a break.
Mode or relevant parameters associated with current diversion level.
Relevant parameters are a part of the current environment.
Must stay in effect until logical output.
Mode must be still or again in effect at the time of physical output.
Default scale indicator â€”if not specified, scale indicators are ignored.
Default scale indicator â€”if not specified, scale indicators are ignored.
Default scale indicator â€”if not specified, scale indicators are ignored.
Default scale indicator â€”if not specified, scale indicators are ignored.



Font and Character Examples

Font and Character Examples .... 181

B.l. Font Style Examples .... 181

B.2. Non-AsclI Characters and minus on the Standard Fonts .... 182

182
B.3. Non-ASCIICharacters and ',, G, +, â€”,=, and + on the Special

Font ..................................................................................................................................





Font and Character Examples

B.l. Font Style Examples

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$% & () ' '*+ â€”.,/:;=? [] I
~ 0 â€”- '/4 r/23/4fi fl ff ffi ffl f ' g ® © ~

Times Italic

abcdefg hijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
'$%<() "*+ â€”,/:;='(jl
~0 â€”- /4 /z /4fi flff ffiffl j''g ® © ™

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

$ % g ( ) s s Q + / ~ e p [ ]

~ p r/4 r/23/4fi fl ff ffi ffi o f ' g ® © ™

Special Mathematical Font

/<> { ) SN+ â€”=+
ctPy5c(T!etrckpv(ozpagxugx1!rm
r~OA=-nZYeVn

><=â€”-=w-+w T'4x. +vnczcz~r)
%~-f-@~ c~~!ol L)J< I I LJl1l

®~>~sunmicrosystems
Revision A of 9 May 1988181

The following fonts are printed in 12-point, with a vertical spacing of 14-point,
and with non-alphanumeric characters separated by '/4-em space. They are Times
Roman, Italic, Bold, and a special mathematical font.



182 Usingnrof f andtrof f

B.2. Non-ASCIICharacters
and minus on the
Standard Fonts

Character
Name

Input
Name

Character
Name

Input
Name CharChar

fi

fl
ff
ffi
ffl
0

close quote
open quote
3/4 Em dash
hyphen or
hyphen
current font minus
bullet
square
rule
1/4
1/2
3/4

'/4

I/2

3/4

B.3. Non-ASCIICharacters
and, ',, +, â€”,=, and
+ on the Special Font

The ASCIIcharactersI, ¹, ", ', ', <, >, 4 (, ),, ", and exist only on the special
font and are printed as a 1-em space if that font is not mounted. The following
characters exist only on the special font except for the upper case Greek letter
names followed by f which are mapped into upper case English letters in what
ever font is mounted on font position one (default Times Roman). The special
math plus, minus, and equals are provided to insulate the appearance of equations
from the choice of standard fonts.

Table B-1 Summaryof tro f f Special Characters

Character
Name

Character
Name

Input
Name

Input
Name CharChar

math plus
math minus
math equals
math star
section
acute accent
grave accent
underrule
slash (matching
alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota

/

7

Tl

e

+>~sun
microsystems

Revision A, of 9 May 1988

'1(Pl
'1 (mi
'1 (eq

(**
'1 (SC
'1(aa
1,(ga
'1(ul
'1(sl
1 (*a

(*b
1 (*g
1,(*d

(*e
(*Z
(*y

'1 (*h
1 (*i

11(em

'1 (hy

'1 (bu
'1(sq
'1(ru
11(14

'1 (34

X

V

backslash) A
Br
E
Z
H
Q~

I
K

'1(fi
'1(fl
'1(ff
~ (Fi
1,(Fl
'1 (de
'1 (dg
'1 (fm
'1 (Ct
~ (rg
'1 (CO

g (*s
11(tS
g (*t
1 (*u
y (*f
~ (*x
1,(*q

(*~
'1 (*A
1, (*H

(*Q
1, (*D

g (*E
1 (*Z
1, (*y
'1 (*H

(*Z
1 (*K

fi
fl
ff
ffi
ffl
degree
dagger
foot mark
cent sign
registered
copyright

sigma
terminal sigma
tau
upsilon
phi
chi

PS1

omega
Alpha(
Beta(
Gamma
Delta
Epsilon)
Zeta)
Etaf
Theta
Iota(
Kappa(



Appendix B â€”Font and Character Examples 183

Table B-1 Summaryof tro f f Special Charactersâ€”Continued

Character
Name

Character
Name

Inpttt
Name

Input
NameChar Char

V

0

P
T
Y

X
V
Q

4(<â€”

N(ua
i (da
N (mu

left arrow
up arrow
down arrow
multiply

N(1b
N(rt
N(rb
N(1k

4 (di divide N(rk

plus-minus
cup (union)

K (+â€”

i (cu
N(bv
N(1f

cap (intersection)N(ca K(rf

N(sb
N(sp
N(ib
N(ip

subset of
superset of
improper subset
improper superset

K(1c
i (rc

Ne

@~~~sun Revision A of 9 May 1988

N (*k
g (*1
~ (*m
~ (*n

(*c
(*o

g (*p
(*r

~ (*T
1, (*U
y (*F

(*y
K (*0
g (*g
~ (sr
~ (rn
4 (>=
N (<=
N (==
N( =
K(ap
N(!=
K(->

kappa
lambda
mu
nu
xl
omicron
Pl
rho
Tauf
Upsilon
Phi
Chip
Psi
Omega
square root
root en extender

identically equal
approx =
approximates
not equal
right arrow

A
M
N

0
n
P
Z

a
V

I

8
E

I

0

1, (*L
g (*~
N (*N

*C
1, (*O

(*p
N (*R

(*S
N(if
N(pd
~ (gr
N (no
~(is
N(pt
N(es
~ (mo
K(br

N(rh
N(1h
i (or
N(ci
4 (1t

LamMa
Mug
Nuf
Xi
Omicron(
Pi
Rhof
Sigma
infinity
partial derivative
gradient
not
integral sign
proportional to
empty set
member of
box vertical rule
double dagger
right hand
left hand
or
circle
left top of big curly
bracket
left bottom
right top
right bot
left center of big
curly bracket
nght center of big
curly bracket
bold verttcal
left floor (left bottom
of big square bracket)
right floor(right
bottom)
left ceiling (left top)
right ceiling (right top)
backslash (escape character,'





Escape Sequences

Escape Sequences 187





Escape Sequences

Note: The escape sequences NN, N ., N", N$, N+, Na, Nn, Nt, and N(newline)
are interpreted in copy mode (see Chapter 10).

tro f f EscapeSequences

Escape
Sequence

Meaning

Ne

N(space)
NO

gn
~$N

Nd Forward (down) 1/2-em vertical motion (1/2-line in
nrof f)

Nfx, Nf (xx, NfN Changeto fontnamedxorxx, orpositionN

sun
microsystems

Revision A, of 9 May 1988187

N (xx

N+x, N+ (xx
Na
Nb' abc... '
Nc

N (to prevent or delay the interpretation of X)
Printable version of the current escape character.
' (acute accent); equivalent to N(aa
' (grave accent); equivalent to K(ga
â€”Minus sign in the current font

Period (dot) (see . de)
Unpaddable space-size space character
Digit-width space
1/6em-narrow space character (zero width in nro f f)
1/12-em half-narrow space character (zero width in
nrof f)

Non-printing, zero width character
Transparent line indicator
Beginning of comment
InterpolateargumentI<¹9
Default optional hyphenation character

Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing



Table C-1 trof f Escape Sequencesâ€”Continued

Escape
Sequence

Meaning

Nh N'
Nkx
Nl' Nc'

iL'Nc '

Nnx, ~n (xx
No' abc... '
Np

ix'N'

+~>~sunmicresystems
Revision A, of 9 May 1988

188 Usingnrof f andtrof f

~sN, Ns+~

Nu
iv'N'
Nw' string '

~zc
K(

N(newline)
~X

Local horizontal motion; move right N (negative=left)
Mark horizontal input place in register x
Horizontal line drawing function (default character is
baselinerule in tro f f or underlinein nro f f; option
ally with character c)

Vertical line drawing function (default character is box
rule; optionally with character c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse one-em vertical motion (reverse line in nr of f)

Point-size change function
Non-interpreted horizontal tab
Reverse (up) I/2-em vertical motion (1/2-line in nr of f)
Local vertical motion; move down N (negative=up)
Interpolate width of string

Extra line-space function (negative before, positive
after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above



Predefined Number Registers

Predefined Number Registers ....





Table D-1 General Number Registers

Register
Name Descripti on

0
0

mo

Table D-2 Read-Only Number Registers

Register
Name Description

.T

.V

><~+sun Revision A, of 9 May 1988191

ct
dl
dIl

dw

dy
hp
ln

nl
sb
st

.$

.A

.H

.L

.P

Predefined Number Registers

Input line-number in current input file; same as . c.
Current page number.
Character type (set by width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.

Current day of the week (1-7).
Current day of the month (1-31).
Current horizontal place on input line.
Output line number.
Current month (1-12).

Vertical position of last printed text baseline.
Depth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

Number of arguments available at the current macro level.
Set to 1 in tso f f, if â€”a option used; always 1 in nro f f.
Available horizontal resolution in basic units.
Current line-spacing parameter (. 1s).
1 if current page is printed, otherwise zero.

Set to 1 in nro f f, if â€”T option used; always 0 in tr of f.
Available vertical resolution in basic units.
Post-line extra line-space most recently utilized using lx ' N '.



192 Usingnrof f andtrof f

Table D-2 Read-Only Number Registersâ€”Continued

Register
Name Description

.C

.d

~P

.S

~v

. Z

®~®~sunmicrosystems
Revision A, of 9 May 1988

.f

.h

~ j

.k

Number of lines read from current input file.
Current vertical place in current diversion; equal to nl, if no
diversion.

Current font as physical quadrant (1-4).
Text baseline high-water mark on current page or diversion.
Current indent.
Current adjustment mode and type.
Horizontal text portion size of current output line.

Current line length.
Length of text portion on previous output line.
Current page offset.
Current page length.
Current point size.

Distance to the next trap.
Equal to 1 in fill mode and 0 in nofil mode.
Current vertical line spacing.
Width of previous character.
Reserved version-dependent register.

Reserved version-dependent register.
Name of current diversion (a string, not a number).



trof f OutputCodes

t ro f f Output Codes ..... 195

E.l. Codes00~ â€”FlashCodesto ExposeCharacters 196

E.2. Codes 1xxxxxxxâ€”Escape Codes Specifying Horizontal
Motion ...............................................,................................................................ 197

197

197

198

E.6. How Fonts are Selected .... 199

E.7. Initial State of the C/A/T .... 199

E.3. Codes 011~ â€”Lead Codes SpecifyingVerticalMotion ....

E.4. Codes 0101xxxx â€” Size Change Codes ................................................

E.5. Codes 0100xxxx â€” Control Codes ...........................................................





t j=of f Output Codes

As we mentioned before, tr of f is geared up to produce binary codes for a pho
totypesetter called a C/A/I'. This appendix describes the codes for the C/A/T in
detail. This information is for people who want to translate C/A/T codes for
other purposes.

The basic mechanism of the C/A/T typesetter is a revolving drum divided into
four quadrants. On each quadrant of the drum you can mount a strip of filmâ€”
one strip of film corresponds to a font. Each font has 108 characters in it. Char
acters are exposed on the final photographic paper by 'flashing' a light through
the appropriate position of the film strip on the drum. The actual font to be used
is selected (as you will see later) by a combination of 'rail', 'mag', and 'font
half' â€”the terms 'rail* and 'mag' are hangovers from very old hot-lead typeset
ting technology and have no place in electro-mechanical systems, but they were
carried over because typesetters can't handle new things. Point size changes are
handled in the C/A/I' by a series of magnifying lenses.

The C/A/T 's basic unit of length (machine unit) is 1/432 inch (there are six of
these units to a typesetter's 'point'). The quantum of horizontal motion is one
unit. The quantum of vertical motion is three units (1/144 inch or half a point).
tr o f f uses the same system of units in its internal computations.

The C/A/I" phototypesetter is driven by sending it a sequence of one-byte (eight
bit byte) codes to specify characters, fonts, point sizes, and other information.
The encoding scheme used was obviously designed by someone wanting to send
the minimum amount of information across a communications channel at the
expense of doing vast amounts of work in the computer driving the typesetter.

Bit 7 of a code byte classifies the byte into one of two major types:

6 5 4 3 2 1 0

Major Code

T)g)e
Furrher Encoding

+>~sun 195 Revision A, of 9 May 1988

A complete C/A/T file is supposed to start with an initialize code (described
later), followed by an escape-16 code, then the body of the text destined for the
C/A/I'. The whole file ends with 14 inches of trailer, followed by a stop code. In
practice, looking at t ro f f 's output file has generated disagreements on what the
file really looks like, but we don't have a C//A/Taround to really try it out.



196 Usingnrof f andtrof f

The top bit (bit 7) is encoded thus:

1 â€”An Escape Code, specifying horizontal motion, as described below.

6 5 4 3 2 1 0BIT

Bit 7 = 1

Escape Code
One's Complement of Amount of Motion

0 â€”indicates that bits 7 and 6 are used to further encode the code byte, as fol
lows:

BIT

Flash Code or

Control Code
Further Encoding

The two upper bits have these meanings:

00 â€”A Flash Code, which selects a character out of a font, as described below.

6 5 4 3 2 1 0BIT

Bits 6 and 7 = 00

Flash Code
CharacterNumber to Flash (1-63)

01 â€”A Control Code, which is thenfurther encoded into one of two categories
depending on whether the next bit is a one or a zero:

6 5 4 3 2BIT

Further EncodingControl Code

1 â€”This is a lead code, described below, or

0 â€”in which case the control code is further encoded into one of three
categories of:

Initialization and termination.

Selecting fonts.

o Specifying the direction of motion for escapes and leading.

We have finally reached the end of this encoding scheme. The following sections
discuss each type of code in detail.

E.1. Codes 00xxxxxxâ€”
Flash Codes to Expose
Characters

+~++sun Revision A, of 9 May 1988

A code with the bits six and seven equal to zero (0 Oxxxxxx)is aplash code. A
flash code specifies flashing one of 63 characters â€”the lower six bits of the flash
code specify which character to flash. This is not enough character combinations
to select even all the characters within a single font (there are 108 characters per
font) and so there are control codes (described later) to select the font and which
half of the font. Given that a specific font is selected via the rail, mag, and (for
the eight-font C/A/T) the tilt codes, you then select an upper-font-half or a
lower-font-half. The lower-font-half is the first 63 characters of the font, and the
upper-font-half is the remaining 45 characters of the font. A flash code of greater



AppendixE â€”trof f OutputCodes 197

than 46 in the upper-half of the font is considered illegal.

E.2. Codes 1xxerxxxâ€”
Escape Codes
Specifying Horizontal
Motion

A code with bit seven equal to 1 (lxxxxxxx) is an escape code. An escape code
specifies horizontal motion. The C/A/1' is a boustrophedonic device â€”that is, it
can move in both directions, and so the direction of motion is specified by one of
the control codes described later on. The amount of horizontal motion is
specified by the one's complement of the lower seven bits of the escape code.

E.3. Codes 011xxxmâ€”
Lead Codes Specifying
Vertical Motion

A codes with the top three bits equal to 011 is a lead code. A lead code is a
subset of the control codes in that the top three bits are 011. Such a code
specifies vertical motion. The amount of the vertical motion is specified by the
one's complement of the lower five bits, in vertical quanta. 'Lead' is a
typesetter's term deriving from the days of hot-lead machines â€”the terminology
sticks with us because the industry moves slowly.

A byte with the top four bits equal to 0101 is a size-change code. Such a code
specifies movement of a lens turret and a doubler lens to change the point size of
the characters. The size-change codes are as follows:

E.4. Codes 0101xxxxâ€”
Size Change Codes

Table E-1 Size Change Codes

Point-Size Binary Code Octal Code Point-Size Binary Code Octal Code

Changes in size using the doubler lens change the horizontal position on the
page:

®~>~sunmicrosystems
Revision A, of 9 May 1988

6
7
8
9

10
11

12
14

0101 1000
0101 0000
0101 0001
0101 0111
0101 0010
0101 0011
0101 0100
0101 0101

0130
0120
0121
0127
0122
0123
0124
0125

16
18
20
22
24
28
36

0101 1001
0101 0110
0101 1010
0101 1011
0101 1100
0101 1101
0101 1110

0131
0126
0132
0133
0134
0135
0136



198 Usingnrof f andtrof f

Table E-2 Single Point-Sizes versus Double Point-Sizes

Table E-3 CIAITControl Codes and their Meanings

Revision A, of 9 May 1988

E.5. Codes 0100xxxxâ€”
Control Codes

A byte with the top four bits equal to 0100 is a control code. Not all of the con
trol codes have meaning to the typesetter. The control codes are in three classes,
namely:

Initialization and termination.

cj Selecting fonts.

a Specifying the direction of motion for escapes and leading. The control
codes and their meanings are:

+>~sun



AppendixE â€”tra f f Output Codes 199

Note that tilt up and tilt down are unimplemented op-codes on the four-font
C/A/T. However, the illustrious hackers at Berkeley implemented a program
called r vcat to drive the Versatec or the Varian printers, and they used the
0116 code to mean 'multiply the next lead-code by 64' to avoid having enor8
mous runs of small lead-codes.

E.6. How Fonts are
Selected

Fonts are selected by a combination of rail, mag, and tilt. The tilt codes exist
only on the eight-font C/A/T' and this is the only difference between the two
machines that is visible to the user. The standard version of tro f f doesn't
know about the eight-font machine â€”University of Illinois is one of the places
that hacked over tr o f f to make it understand the eight-font C/A/T. The
correspondence between rail, mag, and tilt codes is shown in this table:

Table E-4 Correspondence Between Rail, Mag, Tilt, and Font Number

E.7. Initial State of the
C/A/T

For those wishing to write postprocessors to hack over C/A/T codes, here is the
initial state of the beast:

+~+sun
microsystems

Revision A, of 9 May 1988





Index

C

0

D

â€”201â€”

Special Characters
. $ (number of arguments) number register, 109
N&(zero-width non-printing) function, 137
%(page-number) number register, 42, 121

(unpaddable space) function, 136
4" (thin space) function, 136
4 l (thick space) function, 136

%0(digit-size space) function, 134

Ka (leader character) function, 72
. a (post-line extra space) number register, 52
. ab (abort) request, 166
access format for number registers, 125
accessing strings, 98
. ad (adjust) request, 21
adjusting, 17

center, 21
flush left, ragged right, 21
flush right, ragged left, 21
justified, 21

. a f (format of number register) request, 125

. am (append to a macro) request, 112
append to a

diversion, 114
macro, 112
string, 99

arguments to macros, 109
arithmetic expressions with number registers, 124
. as (append to string) request, 99
auto-incrementing number registers, 123
automatic hyphenation, 24

B
Kb (bracket) function, 142
backslash â€”how to print it in t ro f f, 9
basic request, 8
. bd (boldface) request, 60
begin page, 41
blank lines, 19
bold-face request, 60
box lines, 145
. bp (start new page) request, 41

. br (break lines) request, 20, 19
bracket drawing function, 142
break request, 19, 20

Kc (continuation line) function, 20
C/A/I' codes

control, 196
escape, 196
file organization, 195
flash, 196, 196

. c2 (set no-break control character) request, 150

. cc (set control character) request, 150

. ce (center lines) request, 28, 27 thru 28
centered tabs, 68
. ch (change position of a trap) request, 116
change bars, 145
change position of a trap, 116
character translation (substitution), 150
commentsin t ro f f sourcefiles,9
concealed newlines, 10
conditional page break, 42
conditional processing of input, 157
conditional request

. el, 159

. ie, 159

. if, 157

. ig, 160
constant character space width mode request, 54
continuation lines, 10, 20
continuously underline request, 29
control character setting, 150
control code, 196
controllinesin t ro f f, 8
copy mode, 112
creating number registers, 121
. c s (set constant character space width mode) request, 54
ct (character type) number register, 141
. cu (continuously underline) request, 29

Nd (move down) function, 131
. d (vertical place in current diversion) number register, 114
. da (append to a diversion) request, 114
. de (define macro) request, 105



Index â€”Continued

-202

definingtrof f objects
macros, 105
number registers, 121
strings, 98

deleting number registers, 127
device resolution, 10
. di (divert text) request, 114
diversion traps, 114, 116
diversions, 113, 114
divert text, 114
dl (width of last finished diversion) number register, 113
dn (height of last finished diversion) number register, 113
document preparation

formatters, 3 thru 13
n ro f f program, 3 rhru13
text formatters, 3 rhru 13
t ro f f program,3 thru 13

drawingin t ro f f
boxes, 145
brackets, 142
horizontal lines, 143
vertical lines, 143, 144

. d s (define string) request, 9$

. dt (set a diversion trap) request, 116
dy (day of month) number register, 121

. ec (set escape character) request, 149

. el (else conditional) request, 159

. em (set the end-of-processing trap) request, 117
end-of-file, 19
end-of-processing traps, 117
end-of-sentence, 18
environment switching, 169
. eo (set escape off) request, 149
escape character, 149
escape code for C/AiT, 196
. ev (switch environment) request, 169
. ex (terminal message) request, 94
expressions with number registers, 124

F
. f (current font) number register, 62
. f c (set field characters) request, 74
. f i (fill) request, 23
field character, 74
fields, 74
fill request, 23
filler character, 18
filling, 17
. f l (flushbuffer) request, 166
flash code, 196, 196
flush output buffer, 166
font position request, 59
footers, 81, 85
force font size request, 59
. f p (change font position) request, 59
. f t (set font) request, 5$
. f z (force font size) request, 59

general number registers
%â€”page-number, 42, 121
ct â€”character type, 141
dl â€”width of last finished diversion, 113
dn â€”height of last finished diversion, 113
dy â€”day of month, 121
mo â€”month of year, 121
n 1 â€”vertical position of last baseline, 121, 113
sb â€”string depth below baseline, 140
st; â€”string height above baseline, 140
yr â€”last two digits of year, 121

get vertical space request, 47

H
4h (horizontal motion) function, 133
. h (text high-water mark) number register, 18, 114
half em-space, 136
half-line motions

~d (move down) function, 131
Xu (move up) function, 131

hanging indent, 39
hard blank, 17
. hc (hyphenation character) request, 26
headers, 81, 85
horizontal lines, 143
horizontal motion, 133, 134, 136, 138
horizontal place marker, 141
. hw (hyphenate word) request, 25
. hy (hyphenate) request, 24, 25
hyphenation, 24

automatic, 24
control, 24
indicator, 25
indicator character, 26
special cases, 25
specifying location, 25
turn on and off, 24

I
. i (current indent) number register, 38, 40
. ie (if-else conditional) request, 159
. i f (conditional processing) request, 157
. ig (ignore lines) request, 160
ignoring input lines, 160
. in (indent) request, 37
in-line functions

(unpaddable space) function, 136
K&(zero-width non-printing) function, 137
N" (thin space) function, 136
K[ (thick space) function, 136
NO(digit-size space) function, 134
Ka (leader character) function, 72
Nb (bracket) function, 142
~c (continuation line) function, 20
~d (move down) function, 131
Xh (horizontal motion) function, 133
%k(mark horizontal position) function, 141
Xl (horizontal line) function, 143
~L (vertical line) function, 144, 143
No (overstrike) function, 13$



Index â€”Continued

N

â€”203â€”

in-line functions, continued
4p (break and spread) function, 19
~r (reverse line) function, 143
4u (move up) function, 131
~v (vertical motion) function, 132
Nw (width) function, 140
Kx (get extra line space) function, 52
~z (zero motion) function, 139

include
from file, 89
from standard input, 92

incrementing number registers, 123
indentation

first line of paragraph, 38
permanent, 37
temporary, 38

input-line-count traps, 114, 116
interpolating number registers, 121, 125
interrupted line, 20
. it (set an input-line-count trap) request, 116
italic correction, 136
itemized lists, 39

. j (current adjustment indicator) number register, 21

K
~k (mark horizontal position) function, 141

L
~1 (horizontal line) function, 143
4L (vertical line) function, 144, 143
. 1 (line-length) number register, 36
large boxes, 145
. 1c (set leader character) request, 73
leaders and leader characters, 71, 72
left margin, 35
length of title, 83
. 1g (set ligature mode) request, 63
ligatures, 63
line adjustment indicators

both, 21
center, 21
indentation, 37
left, 21
normal, 21
right, 21

line drawing
functions, 143, 144
horizontal, 143
vertical, 143, 144

line numbering
start, 153
suspend, 154

line spacing request, 51
line-length, 35
. 11 (set line-length) request, 35
local motions, 132

(unpaddable space) function, 136
~&(zero-width non-printing) function, 137

local motions, continued
X" (thin space) function, 136
h I (thick space) function, 136
%0 (digit-size space) function, 134
Xb (bracket) function, 142
~d (move down) function, 131
Nh (horizontal motion) function, 133
%1 (horizontal line) function, 143
~L (vertical line) function, 144, 143
4o (overstrike) function, 138
~r (reverse line) function, 143
Xu (move up) function, 131
~v (vertical motion) function, 132
Xz (zero mofion) function, 139

long lines, 10
. 1s (change line spacing) request, 51
. 1t; (set length of title) request, 83

macros, 9, 105
append to, 112
arguments to, 109
copy mode, 112
defining, 105
embedded blanks, 111
invoking, 105
print names and sizes, 165
remove, 107
renaming, 108

margin character, 145
margins on a page

withnro f f andt.ro f f, 21,35
mark

horizontal position, 141
vertical position, 43, 114

. mc (margin character) request, 145
measure, 35
. mk (mark vertical position) request, 43, 114
mo (month of year) number register, 121

. n (text length) number register, 18

. na (no adjust) request, 22

. ne (need space) request, 42
need space, 42
new page, 41
. nf (no fill) request, 23
. nh (no hyphenation) request, 25, 24
n1 (vertical position of last baseline) number register, 121, 113
. nm (number lines) request, 153
. nn (no number) request, 154
no adjust request, 22
no fill request, 23
no hyphenation request, 24, 25
no space mode request, 53
no-break control character setting, 150
non-prinung character, 137
. nr (set number register) request, 121
nrof f command

exit from, 94
mtroductton to, 3, 13



Index â€”Conti nued

. n s (no space mode) request, 53
number registers, 121

access format, 125
auto-incrementing, 123
creating, 121
expressions, 124
interpolating, 121
removing, 127
setting, 121

numbering lines, 153, 154
. nx (next file) request, 91

0
Ko (overstrike) function, 13S
. o (page-offset) number register, 35
one-twelfth em-space, 136
orphans, 43
. o s (output saved vertical space) request, 53
output saved vertical request, 53
overstriking, 138

P
~p (break and spread) function, 19
. p (page-length) number register, 41
padding indicators, 74
page length changes, 41
page number, 42, 84
page traps, 114
page-offset, 35
. pc (set page number character) request, 84
. pi (pipe to program) request, 91
pipe to program, 91
. pl (set page length) request, 41
. pm (print macros) request, 165
. pn (set page number) request, 42
. po (set page-offset) request, 35
point size request, 49
predefined number registers

%â€”page-number, 42, 121
. $ â€”number of arguments, 109
. a â€”post-line extra space, 52
. d â€”vertical place in current diversion, 114
. f â€”current font, 62
. h â€”text high-water mark, 1S, 114
. i â€”current indent, 38, 40
. j â€”current adjustment indicator, 21
. l â€”line-length, 36
. n â€”text length, 18
. o â€”page-offset, 35
. p â€”page-length, 41
. s â€”point-size, 49
. t â€”distance to next trap, 113, 115
. u â€”fill mode indicator, 23
. v â€”vertical spacing, 51
. z â€”name of current diversion, 114
ct â€”character type, 141
dl â€”width of last finished diversion, 113
dn â€”height of last finished diversion, 113
dy â€”day of month, 121
mo â€”month of year, 121
nl â€”vertical position of last baseline, 121, 113

predefined number registers, continued
sb â€”string depth below baseline, 140
st â€”string height above baseline, 140
yr â€”last two digits of year, 121

print macros, 165
Procrustean mold, 23
. ps (change point size) request, 49

R
Nr (reverse line) function, 143
. rd (read standard input) request, 92
read-only number registers

. $ â€”number of arguments, 109

. a â€”post-line extra space, 52

. d â€”vertical place in current diversion, 114

. f â€”current font, 62

. h â€”text high-water mark, 18, 114

. i â€”current indent, 38, 40

. j â€”current adjustment indicator, 21

. l â€”line-length, 36

. n â€”text length, 18

. o â€”page-offset, 35

. p â€”page-length, 41

. s â€”point-size, 49

. t â€”distance to next trap, 113, 115

. u â€”fill mode indicator, 23

. v â€”vertical spacing, 51

. z â€”name of current diversion, 114
reading from standard input, 92
referencing strings, 98
removing

macro definitions, 107
number registers, 127
string definitions, 107

renaming macros and strings, 108
requests, 8

. ab â€”abort, 166

. ad â€”adjust, 21

. a f â€”format of number register, 125

. am â€”append to a macro, 112

. a s â€”append to string, 99

. bd â€”break line, 60

. bp â€”begin page, 41

. br â€”break line, 20, 19

. c2 â€”set no-break control character, 150

. cc â€”set control character, 150

. ce â€”center lines, 2S, 27 thru 28

. ch â€”change position of a trap, 116

. cs â€”constant spacing, 54

. cu â€”continuously underline, 29

. da â€”append to a diversion, 114

. de â€”define macro, 105

. di â€”divert text, 114

. ds â€”define string, 98

. dt â€”set a diversion trap, 116

. ec â€”set escape character, 149

. el â€”else conditional, 159

. em â€”set the end-of-processing trap, 117

. eo â€”set escape off, 149

. ev â€”switch environment, 169

. ex â€”exitfromnro f f or tro f f, 94

. f c â€”set field characters, 74

. fi â€”fill,23



Index â€”Continued

requ

reso
resto
return
return

â€”205â€”

ests, continued
. fl â€”flush buffer, 166
. fp â€”font posifion, 59
. f t â€”set font, 58
. f z â€”force font size, 59
. hc â€”hyphenation character, 26
. hw â€”hyphenate word, 25
. hy â€”hyphenate, 24, 25
. ie â€”if-else conditional, 159
. i f â€”conditional processing, 157
. ig â€”ignore lines, 160
. in â€”indent, 37
. it â€”set an input-line-count trap, 116
. 1c â€”set leader character, 73
. lg â€”set ligature mode, 63
. 11 â€”set line-length, 35
. 1 s â€”line spacing, 51
. lt â€”set length of title, 83
. mc â€”margin character, 145
. mk â€”mark vertical position, 43, 114
. na â€”no adjust, 22
. ne â€”need space, 42
.nf â€”no fill, 23
. nh â€”no hyphenation, 25, 24
. nm â€”number lines, 153
. nn â€”no numbering, 154
. n r â€”set number register, 121
. ns â€”no space mode, 53
. nx â€”read next source file, 91
. os â€”output saved vertical space, 53
. pc â€”set page number character, 84
. pi â€”pipe to program, 91
. pl â€”set page length, 41
. pm â€”print macros, 165
. pn â€”set page number, 42
. po â€”set page-offset, 35
. ps â€”point size, 49
. rd â€”read from standard input, 92
removing, 107
renaming, 108
. rm â€”remove request, macro, or string, 107
. rn â€”rename request, macro, or string, 108
. rr â€”remove number register, 127
. rs â€”restore space mode, 53
. rt â€”return to position, 44, 114
. so â€”switch source file, 89
. sp â€”space, 47
. ss â€”set space size, 54
. sv â€”save vertical space, 52
. ta â€”set tab stops, 67
. tc â€”set tab character, 69
. t i â€”temporary indent, 38
. tl â€”define title, 85
. tm â€”terminal message, 94
. t r â€”translate characters, 150
. uf â€”underline font, 29
. ul â€”underline, 28
. vs â€”vertical spacing, 51
. wh â€”when something, 115, 82

lution, 10
re space mode request, 53

to marked vertical position, 114
to vertical position, 44

reverse line function, 143
revision bars, 145
right-adjusted tabs, 68
. rm (remove request, macro, or string) request, 107
. rn (rename request, macro, or string) request, 108
. rr (remove number register) request, 127
. rs (restore space mode) request, 53
. rt (return to position) request, 44, 114
rules

horizontal, 143
vertical, 143, 144

running headers and footers, 81, 85

. s (point-size) number register, 49
save vertical space request, 52
saving state, 169
sb (string depth below baseline) number register, 140
sentence endings, 18
set font request, 58
set ligature mode request, 63
set page number, 42
set space-character size request, 54
setting line-length, 35
setting number registers, 121
setting tabs, 67
skipping input lines, 160
. so (switch source) request, 89
. sp (get vertical space) request, 47
space request, 47
spaces, 19
. s s (set space-character size) request, 54
st. (string height above baseline) number register, 140
standard input

readingt ro f f inputfrom,92
start line numbering, 153
start new page, 41
strings, 97

accessing, 98
appending to, 99
beginning with blanks, 98
defining, 98
removing, 107
renaming, 108

substituting characters, 150
suspend line numbering, 154
. sv (save vertical space) request, 52
switch source file, 89

. t (distance to next trap) number register, 113, 115

. t;a (set tab stops) request, 67
tabs

absolute, 68
centered, 68
relative, 68
replacement character, 69
right-adjusted, 68
setting, 67



Index â€”Conti nued

â€”206â€”

. t c (set tab character) request, 69
temporary indent of one line, 38
text lines

as trof f input,8
ignoring, 160
words in, 17

thick space, 136
thin space, 136
three-part titles, 85
. ti (temporary indent) request, 38
title length, 83
titles, 81
. t1 (title) request, 85
. t m(terminal message) request, 94
. tr (translatecharacters) request, 150
translating characters, 150
transparent throughput, 10
traps

change position of, 116
diversion, 116
end-of-processing, 117
input-line-count, 116
page, 114

trof f command
exit from, 94
introduction to, 3, 13

turn escape mechanism on and off, 149

~u (move up) function, 131
. u (fill mode indicator) number register, 23
. u f (underline font) request, 29
. u 1 (underline) request, 28
underline font request, 29
underline request, 28
units, 10
unpaddable space, 17

~v (vertical motion) function, 132
. v (vertical spacing) number register, 51
vertical lines, 143, 144
vertical motion, 132
vertical position

mark, 43
return to, 44

vertical spacing request, 51
. vs (change vertical spacing) request, 51

Nw(width) function, 140
. wh (when something) request, 115, 82
when something request, 82, 115
width function, 140
word, 17

~x (get extra line space) function, 52

y r (last two digits of year) number register, 121

Kz (zero motion) function, 139
. z (name of current diversion) number register, 114
zero motion function, 139
zero-width character, 18, 137


