
Stardodger II t h e
H a l  version

Routine
Basic
lines

BCPL
procs

Initialisation 20-70 start
Print title screen 90-170 start

Draw game screen 180-450 drawscr
Main game logic 470-530 start

Print game over screen 550-600 start
Print success screen 620-680 start

Wait for keypress routine 700-760 waitkey

O
N
C
E  
t
h
e  
B
a
s
i
c  
v
e
r
s
i
o
n  
o
f  
S
t
a
r
d
o
d
g
e
r

worked to my satisfaction - which took
longer than expected -  the program
was rewritten using Arnor's BCPL

compiler. BCPL was the forerunner of the oh-so-
trendy C language beloved by computer sci•
entists and other deviants. Unlike C, BCPL is
quite readable, yet it still enforces a carefully
structured programming style.

This is due to its syntax and the lack of error
checking. Care must be taken or the compiler will
merrily churn out guff without a single beep of
displeasure.

The BCPL Stardodger took far less time to write
than the Basic version, mainly because all the
program logic had already been worked out.

Dynamic elegance
4 0 1 . 0 . 1 i r4PEIONIEneb

A particulany neat feature of BCPL is the case
structure -  SWITCHON..INTO..CASE, used here
in the collision detection routine - which is simi-
lar to, but more elegant than, Basicrs ON..GOTO.

Nearly all the variables used in this program

Arnor BCPL compiler
Output file name? STARBCPL
- OPTION S-,B-
-> GET"ALIBHDR"
-)• GET"ALIBHDR1"
-›  GET"AMSDOS"
- GET"STARD0J.B"
->
Phase 1 complete. Tree size 15652
Phase 1 errors: 0
Phase 2 complete. Code size 9631
Phase 2 errors: 0
Code origin 370

Compling the SCP1. version -the dialogue

The MBM routines - a comparison

Amstrad User October 1988

PROGRAMMING

Stewart Russell shows you how to program the same
game three times, in three very different languages

are static variables; this means they are always
available to any part of the program. Dynamic
variables - such as t used in the pause procedure
- disappear after being finished with. Unlike
Basic, all BCPL variables and constants, known as
manifests, have to be defined before use.

Also unlike Basic, which has string, integer and
real variables, BCPL has only one type of variable
- the "word", or 16 bits. This makes it ideal for
implementation on a home micro.

It does have some odd conventions though.
For instance, the asterisk is thought of as a con-
trol character. It cannot be represented as simply
* but has to be written as** before it is accepted.
Gripes aside, BCPL is a lovely language to use,

You can use any Ascii text editor for producing
the source code. Indenting the text is not necess-

ary, but helps to show the levels of the program.
After saving the text - call it STARDOIB - it may
be an idea to dry run it through the compiler
without GETting any of the libraries. As long as
only Undefined identifier errors are produced the
text should be OK. But beware of spelling mis-
takes in procedure names, as these cannot be
checked for until the final compilation stage.

You must first invoke the compiler from disc,
using RUN"DISC and then I  BCPL. Follow the
compiler dialogue in the panel, but note that
minor differences may occur in the numeric
values produced.
•  Next month, in the final part of this series, we'll
look at the assembly language version.

Page 27



Page 28

PROGRAMMING

11 Stardodger us ing Arnor's BCPL compiter.
/ /  Wr i t t er  by  Stewart  C Russell o f  Edible Computers.
/ /  Requires Al ibhdr,  At ibhdrl  and Amsdos l i b ra r i es .

MANIFEST
Sc

star
delay :  3

S)

STATIC
Sc

increment :  5
xstar .  0
ystar
dy = 4

5
done = 0
next = 0
status .  0
ks 0
c 0
y

S)

LET wait key () BE 1 1  Pr int s  message and wait s  f o r  key
S(

tocate(8, 25)
writesCPress any key t o  c ont inue. )
WHILE keyvalid() DO LOOP 1 1  Clear buf f er
UNTIL keyvalia() DO LOOP 1 1  Cont inue on keypress

S)

LET pause(length) BE 1 1  Pauses f o r  tength/300 seconds
Sc

LET t  t i m e ( )  / /  Get c urrent  t ime
UNTIL t ime() EQ t  + Length DO LOOP 1 1  Wait  u n t i l  "(engt r

$) 1 1  unit s  have elapsed.

LET drawscr(q) BE
S(

mode(1)
drawr(629, 0 )
drawr(0,  170)
mover(0, 60)
drawr(0,  169)
drawr( -  629,  0)
drawr(0, -  399)
drawr(0,  2)
drawr(627, 0)
drawr(0,  168)
mover(0, 60)
drawr(0, 167)
drawr( -  625,  0)
drawr(0,  -  399)

FOR s  .  1 TO q DO
$(

S)

gpen(3)
move(637, 0 )
drawr(0,  400)
drawr(2,  0)
drawr(0,  -  400)

11 Loop delay  i n  1/300ths o f  a sec.

/ /  Number of  s t ars  added per screen
11 X-pos it ion of  s t ar
11 Y-pos it ion of  s t ar
11 Y-pos it ion increment
11 St art  no of  s t ars  per screen
11 Numoer of  screens completed
/ /  Next screen number
11 Status ,  1 =  dead, 0 n o t  dead
11 Sh i f t  key s tatus
11 I nk  s tatus  f o r  c o l l i s ion
11 Col l is ion detec t ion yrpos incremert

/ /  Draw t he screen wit h "El' s tars

xstar ( r a n d o m ( )  REM 561) + 50 / /  Get rnd x-pos f o r  4
randoeseed : = xs tar + t ime()  / /  Feed random seed
ystar : = (random() REM 361) 4 20 l i  Y-pos
randomseed randoms eed  -  (x s t ar REM ys tar 4 q )  11 Seed
move(xstar, y s t ar) 1 1  Move t o  rnd pos it ion
gwrch(star) 1 1  Plot  a *  there

/ /  Draw t ines  i n  ink  3 a t  end of  screen
11 t o  check f o r  screen complet ion
11 (These l ines  are inv i s ib le )

gpen(1) 1 1  Set  pen t o  white again
move(0, 200) 1 1  Move t o  t ine  s t a r t  pos it ion

$)

LET s t a r t ( )  BE / /  * * *  Main Rout ine * * *
Sc

Sc
mode(1)
border(0,  0)
ink (0,  0,  0)
ink(1,  26,  26)
ink(3,  0,  0)  1 1  Set  up inks  and mode
tocate(16, 1)
writes("Stardodgerl / /  Pr in t  t i t Le  screen
tocate(I ,  5)
writes('Avoid t he k i l l e r  As terisks ,  and seek the")
tocate(8, 6)
writesCwondrous Nextscreen Gap ! I
locate(12, 13)
writes('Use SHIFT t o  c limb")
pen(2)
locate(3,  18)
writ es (Writ t en i n  BCPL by Stewart  C Russell' )
lacate(9,  19)
writes("Edible Computers 23/ 4/ 88)
pen(1)
waitkey() / /  Press any  key message
status : = 0 1 1  Reset pointers
q : = 5 1 1  t o  screen 0,  s tatus  = a l i v e
drawscr(q) / /  Draw screen 1 ( fi v e  s tars )
Sc

ks 0  / /  CLear key s tatus  v ariable
drawr(4,  dy ) 1 1  Draw l i n e  un i t
pause(delay) / /  To al low f o r  reac t ions
ks i r k e y ( 2 1 )  / /  Get s h i f t  key s tatus
TEST ks EQ -  1 THEN dy : = 4 ELSE dy -  4 11 Move up
y d y  /  2 1 1  Get y-pos i n  f ront  o f  l i n e
c : = gt es t r(2,  y )  / /  Test  point  i n  f ront  of  t i ne

$)

SWITCHON c INTO / /  Act  on ink  no.  according(...
Sc

CASE 0:  y  -  1 *  y  / /  I f  i nk  g
mover( -  2 ,  y )  1 1  go back t o  otd coords.
ENDCASE

CASE 3:  mode(1) / /  I f  i nk  3
locate(16, 1) / /  congratulate player
writes(WELL DONE') / /  on complet ion.
tocate(10, 13)
writesCStand by f o r  Screen 1
next ;
2  
( ( I  
/  
i n
c r
e m
e n
t )  
4  
1

writen(next ) / /  Pr in t  next  screen no
q : = q 4 increment 1 1  Increase no of  s t ars
wait key()
drawscr(q) 1 1  Draw the next  screen
[ND CASE

DEFAULT: s tatus  i  / /  Default  t o  dy ing
ENDCASE

$)
S)
REPEATUNTIL s tatus  NE 0 / /  Repeat Loop while not  dead

mode(1) / /  PLayer i s  dead i f  we've got  t o  here
locate(16, 1)
writes("YOU GOOFED')
tocate(5, 13)
vrites("Number of  Screens compteted =
done ( q  /  increment) -  I
writen(done) 1 1  Pr in t  no of  screens completed
waitkey()

S)
REPEAT / /  Repeat outer loop of  ' s t ar t '

'Amstrad User October 1988


