PROGRAMMING

Stardodger Il — the

BCPL version

Stewart Russell shows you how to program the same
game three times, in three very different languages :

NCE the Basic version of Stardodger

worked to my satisfaction — which took

longer than expected — the program

was rewritten using Arnor's BCPL
compiler. BCPL was the forerunner of the oh-so-
trendy C language beloved by computer sci-
entists and other deviants. Unlike C, BCPL is
quite readable, yet it still enforces a carefully
structured programming style.

This is due to its syntax and the lack of error
checking. Care must be taken or the compiler will
merrily churn out guff without a single beep of
displeasure.

The BCPL Stardodger took far less time to write
than the Basic version, mainly because all the
program logic had already been worked out.

Dynamic elegance
M

A particularly neat feature of BCPL is the case
structure — SWITCHON..INTO..CASE, used here
in the collision detection routine - which is simi-
lar to, but more elegant than, Basic's ON..GOTO.

Nearly all the variables used in this program

Arnor BCPL compiler

Qutput file name? STARBCPL

-> OPTION §-B-

-> GET"ALIBHDR"

-> GET"ALIBHDR1"

-> GET"AMSDOS"

-> GET"STARDOJ.B"

->,

Phase 1 complete. Tree size 15652
Phase 1 errors: 0

Phase 2 complete. Code size 9631
Phase 2 errors: 0

Code origin 370

Compifing the BCPL version = the dislogue

Basic | BCPL
Routine | lines | procs
Initialisation | 20-70 | start
Print title screen | 90-170 | start
Draw game screen | 180-450 | drawscr
Main game logic | 470-530 | start
Print game over screen | 550-600 | start
Print success screen | 620-680 | start
Wait for keypress routine | 700-760 | waitkey

The main routings - a companison

are static variables; this means they are always
available to any part of the program. Dynamic
variables — such as t used in the pause procedure
- disappear after being finished with. Unlike
Basic, all BCPL variables and constants, known as
manifests, have to be defined before use.

Also unlike Basic, which has string, integer and
real variables, BCPL has only one type of variable
— the "word"”, or 16 bits. This makes it ideal for
implementation on a home micro.

It does have some odd conventions though.
For instance, the asterisk is thought of as a con-
trol character, It cannot be represented as simply
* but has to be written as ** before it is accepted.
Gripes aside, BCPL is a lovely language to use.

You can use any Ascii text editor for producing
the source code. Indenting the text is not necess-

ary, but helps to show the levels of the program.
After saving the text — call it STARDOJ.B - it may
be an idea to dry run it through the compiler
without GETting any of the libraries. As long as
only Undefined identifier errors are produced the
text should be OK. But beware of spelling mis-
takes in procedure names, as these cannot be
checked for until the final compilation stage.
You must first invoke the compiler from disc,
using RUN"DISC and then |BCPL. Follow the
compiler dialogue in the panel, but note that
minor differences may occur in the numeric
values produced.
@ Next month, in the final part of this series, we'll
look at the assembly language version.

Amstrad User Cctober 19588

Page 27

/! Stardodaer using Arnor's BCPL compiler.
If Written by Stewart (Russell of Edible Computers.
[/ Requires Alibhdr, Alibhdr1 and Amsdos libraries.

MANIFEST
§(
star = ‘&’
delay = 3 f{ Loop delay in 1/3@0ths of a sec.
5)
STATIC
5(
increment = § {{ Mumber of stars added per screen
xstar = @ ff X-position of star
ystar = @ {f Y-position of star
dy = & ff Y=-position increment
q=3 {f Start no of stars per screen
done = @ {{ Mumber of screens completed
next = @ ff Wext screen number
status = @ f/ Status, 1 = dead, B = not dead
ks = ff shift key status
c=8 {1 Ink status for collision
y = @ f{ Collision detection y-pos increment
%)
LET waitkey() BE {{ Prints message and waits for key
30

locate(d, 25)
writes("Press any key to continue,”)
WHILE keyvalid() 00 LOOP
UNTIL keyvalid() DO LOQP
§)

ff Clear buffer
{/ Continue on keypress

LET pause(length) BE
§(
LET t = time()
UNTIL time(} EQ t + length DO LOOP

{f Pauses for length/300 seconds

/! Get current time
{1 Wait wuntil "length”

) {/ units have elapsed.
LET drawscr{q) BE {1 Draw the screen Wwith "g" stars
$(

nodel(1)

drawr(629, @)
drawr(@, 178)
nover(f, &@)
drawr(@, 14%)
drawr(- 429, 8)
drawr(@, - 399)
draur(, 2)
drawr(627, @)
drawr(f, 168)
mover (B, &8)
drawr (@, 167)
drawr(- 425, 8]
drawr(@, - 399]

FOR 5 =1 T0 q DO
5(:
xstar := (randomn(} REM 561) + 5@ // Get rnd x-pos for #
randonseed := xstar + timel) /! Feed random seed
ystar ;= (randon() REM 361) + 28 // Y-pos

randonsead := randomseed - (xstar REM ystar + q) [/ Seed
move(xstar, ystar) {/ Move to rnd position
gurchistar) {f Plot a * there

5)

ff Draw lines in ink 3 at end of screen
/I to check for screen completion
/f (These Lines are invisible)

gpen(3)

nove (637, B)
drawr(f, 48@)
drawr(2, @)
drawr(@, - 4082
gpent1)

novel(B, 208)

{f Set pen to white again
/! Move to line start position

)

LET
14
$(

done := {q / increment) - 1
writen{done) f! Print no of screens completed
waitkeyl)

£)

REPEAT f{ Repeat outer loop of "start’

$)

start({) BE {1 #%* Main Routine ##*

mode(1)

border(@, B)

ink(@, 8, B}

ink(1, 26, 28]
ink(3, 8, 8)
locatel(16, 1)
writes("Stardodger")
locate(1, 5)
writes("Avoid the killer Asterisks, and seek the")
locate(8, &)

writes("wondrous Nextscreen Gap !")

locate(12, 13}

writes(*Use SHIFT to climb")

peni2)

locate(3, 18)

writes("Written in BCPL by Stewart C Russell”)
locate(9, 19)

writes("Edible Computers 23/4/88")

{! Set up inks and mode

ff Print title screen

peni1)
waitkey() {{/ Press any key message
status := @ {f Reset pointers
q:=§ ff to screen @, status = alive
drawscrig) I/ Draw screen 1 (five stars)
5(
ks := @ {f Clear key status variable
dravr(4, dy) ff Draw Line unit
pauseldelay) {1 To allow for reactions
ks := inkey(21) {1 Get shift key status
TEST ks EQ - 1 THEN dy := & ELSE dy := - & // Move up
yie=dy 12 {1 Get y-pos in front of Line

¢ := gtestr(2, ¥l {1 Test point in front of line

SWITCHON ¢ INTO {1 het on ink no. accordingly

H
CASE @: vy 1= = 1 &£y /f If ink @
maver(= 2, y) /! qo back to old coords.
ENDCASE

CASE 3: mode(1)
locate(14, 1)
writes("WELL DONE")
locate(18, 13)
writes("Stand by for Screen “)
next := (g [increment) + 1
writentnext)

g := gt increment

MLt Ank 3
/f congratulate player
{{ on completion.

I/ Print next screen no
ff Increase no of stars

waitkey()
drawscrig) ff Draw the next screen
ENDCASE
BEFAULT: status := 1 fi Default to dying
ENDCASE

$)

)

REPEATUNTIL status NE @ // Repeat Loop while not dead
mode(1)
locate(14, 1)
writes("YOU GOOFED")

locate(S, 13)

writes("Number of Screens completed =)

{1 Player 15 dead if we've got to here

N

Page 28

Amstrad User October 1988

